login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the root of the equation (1-r)^(2*r-1) = r^(2*r).
16

%I #24 Nov 25 2017 04:27:28

%S 7,0,3,5,0,6,0,7,6,4,3,0,6,6,2,4,3,0,9,6,9,2,9,6,6,1,6,2,1,7,7,7,0,9,

%T 5,2,1,3,2,4,6,8,4,5,7,4,2,4,2,8,1,5,5,5,5,8,6,2,1,5,7,1,6,5,1,0,5,1,

%U 2,3,0,6,0,0,3,9,9,4,0,1,4,4,9,5,2,5,4,5,6,8,0,4,6,0,5,7,3,1,5,1,9,8,5,4,4,8,3

%N Decimal expansion of the root of the equation (1-r)^(2*r-1) = r^(2*r).

%C Constant is associated with A167008, A219206 and A219207.

%e 0.70350607643066243...

%p Digits:= 140:

%p v:= convert(fsolve( (1-r)^(2*r-1) = r^(2*r), r=1/2), string):

%p seq(parse(v[n+2]), n=0..120); # _Alois P. Heinz_, Dec 12 2012

%t RealDigits[r/.FindRoot[(1-r)^(2*r-1)==r^(2*r),{r,1/2}, WorkingPrecision->250], 10, 200][[1]]

%o (PARI) solve(x=.7,1,(1-x)^(2*x-1) - x^(2*x)) \\ _Charles R Greathouse IV_, Apr 25 2016

%Y Cf. A167008, A219206, A219207, A228808, A184731, A206154, A206156, A206158, A237421, A295611.

%K nonn,cons

%O 0,1

%A _Vaclav Kotesovec_, Dec 12 2012