Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Feb 11 2021 01:25:36
%S 2,11,24,37,38,39,50,96,96,96,96,97,97,125,125,132,178,178,178,179,
%T 179,180,213,221,222,222,224,235,235,242,282,283,307,309,310,360,360,
%U 361,362,366,367,367,377,377,377,421,422,458,458,502,503,504
%N a(n) is the smallest number, such that for all N >= a(n) there are at least n primes between 14*N and 15*N.
%H Peter J. C. Moses, <a href="/A220281/b220281.txt">Table of n, a(n) for n = 1..3000</a>
%H N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and J. Sondow, <a href="http://arxiv.org/abs/1108.0475">Generalized Ramanujan primes</a>, arXiv:1108.0475 [math.NT], 2011.
%H N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, and J. Sondow, <a href="http://link.springer.com/chapter/10.1007/978-1-4939-1601-6_1">Generalized Ramanujan primes</a>, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13.
%H Vladimir Shevelev, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Shevelev/shevelev19.html">Ramanujan and Labos primes, their generalizations, and classifications of primes</a>, J. Integer Seq. 15 (2012) Article 12.5.4.
%H Vladimir Shevelev, Сharles R. Greathouse IV, and Peter J. C. Moses, <a href="http://arxiv.org/abs/1212.2785">On intervals (kn, (k+1)n) containing a prime for all n>1</a>, arXiv:1212.2785 [math.NT], 2012.
%F a(n) <= ceiling(R_(15/14)(n)/15), where R_v(n) (v>1) are generalized Ramanujan numbers (see Shevelev's link). In particular, for n >= 1, {R_(15/14)(n)}={127, 307, 347, 563, 569, 733, 1423, 1427, 1429, 1433, 1439, 1447, ...}. Moreover, if R_(15/14)(n) == 1 or 2 (mod 10), then a(n) = ceiling(R_(15/14)(n)/15).
%Y Cf. A084140, A220268, A220269, A220273, A220274.
%K nonn
%O 1,1
%A _Vladimir Shevelev_, _Charles R Greathouse IV_ and _Peter J. C. Moses_, Dec 09 2012