Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 09 2012 02:52:21
%S 1,2,2,9,8,2,9,72,177,222,163,72,18,2,64,800,3696,9800,17408,22284,
%T 21340,15554,8652,3633,1120,240,32,2,625,11250,82500,365000,1131750,
%U 2654250,4922750,7425000,9274150,9704600,8566200,6398000,4042345,2152890,959690,354020
%N Triangle where the g.f. of row n is: Sum_{k=0..n^2-n+1} T(n,k)*y^k = (2*(1+y)^n - 1) * ((1+y)^n - 1)^(n-1) / y^(n-1), as read by rows.
%C Based on the identity:
%C 1 = Sum_{n>=1} (2*G(x)^n - 1) * (1 - G(x)^n)^(n-1) for all G(x) such that G(0)=1.
%H Paul D. Hanna, <a href="/A220265/b220265.txt">Triangle of Rows 1..20, flattened.</a>
%F 0 = Sum_{k=0..n-1} (-1)^k * T(n-k,k) for n>1.
%F Antidiagonal sums equal A220266.
%F Main diagonal equals A220267.
%F Row sums equal (2^(n+1) - 1)*(2^n - 1)^(n-1).
%F Position of largest term in row n is: A099392(n) = ceiling(n^2/2) - (n-1).
%e Triangle begins:
%e 1, 2;
%e 2, 9, 8, 2;
%e 9, 72, 177, 222, 163, 72, 18, 2;
%e 64, 800, 3696, 9800, 17408, 22284, 21340, 15554, 8652, 3633, 1120, 240, 32, 2;
%e 625, 11250, 82500, 365000, 1131750, 2654250, 4922750, 7425000, 9274150, 9704600, 8566200, 6398000, 4042345, 2152890, 959690, 354020, 106251, 25300, 4600, 600, 50, 2;
%e 7776, 190512, 2015280, 13222440, 62141310, 225598527, 662159412, 1618976925, 3366367410, 6041884575, 9462175520, 13034476980, 15886286910, 17202209995, 16595155500, 14285514705, 10978477070, 7528219125, 4599186000, 2496823900, 1200043026, 508072257, 188241900, 60515895, 16695030, 3895573, 753984, 117810, 14280, 1260, 72, 2; ...
%e where the alternating antidiagonal sums equal zero (after the initial '1'):
%e 0 = 2 - 2;
%e 0 = 9 - 9;
%e 0 = 64 - 72 + 8;
%e 0 = 625 - 800 + 177 - 2;
%e 0 = 7776 - 11250 + 3696 - 222;
%e 0 = 117649 - 190512 + 82500 - 9800 + 163; ...
%e Column 0 forms A000169(n) = n^(n-1) and column 1 equals n^(n-2)*n*(n+1)^2/2.
%e The largest term in row n, found at position ceiling(n^2/2) - (n-1), begins:
%e [2, 9, 222, 22284, 9704600, 17202209995, 123106610062800, 3600033286934164416, 421003580776636784633028, 200645860378226792820279591852, ...].
%o (PARI) {T(n,k)=polcoeff((2*(1+x)^n-1)*((1+x)^n-1)^(n-1)/x^(n-1),k)}
%o for(n=1,6,for(k=0,n^2-n+1,print1(T(n,k),", "));print(("")))
%Y Cf. A220266, A220267, A000169.
%K nonn,tabf
%O 1,2
%A _Paul D. Hanna_, Dec 09 2012