login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of neighbor maps: number of nX2 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal, vertical and antidiagonal neighbors in a random 0..2 nX2 array
1

%I #4 Dec 06 2012 16:23:34

%S 2,16,48,256,856,4096,15872,65536,259584,1048576,4177632,16777216,

%T 67051520,268435456,1073479680,4294967296,17178580480,68719476736,

%U 274872664064,1099511627776,4398023442432,17592186044416,70368641459200

%N Sum of neighbor maps: number of nX2 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal, vertical and antidiagonal neighbors in a random 0..2 nX2 array

%C Column 2 of A220177

%H R. H. Hardin, <a href="/A220173/b220173.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +8*a(n-2) -32*a(n-3) -16*a(n-4) +64*a(n-5) +52*a(n-6) -208*a(n-7) -416*a(n-8) +1664*a(n-9) +832*a(n-10) -3328*a(n-11) -1056*a(n-12) +4224*a(n-13) +8448*a(n-14) -33792*a(n-15) -16896*a(n-16) +67584*a(n-17) +10880*a(n-18) -43520*a(n-19) -87040*a(n-20) +348160*a(n-21) +174080*a(n-22) -696320*a(n-23) -62720*a(n-24) +250880*a(n-25) +501760*a(n-26) -2007040*a(n-27) -1003520*a(n-28) +4014080*a(n-29) +205824*a(n-30) -823296*a(n-31) -1646592*a(n-32) +6586368*a(n-33) +3293184*a(n-34) -13172736*a(n-35) -360448*a(n-36) +1441792*a(n-37) +2883584*a(n-38) -11534336*a(n-39) -5767168*a(n-40) +23068672*a(n-41) +262144*a(n-42) -1048576*a(n-43) -2097152*a(n-44) +8388608*a(n-45) +4194304*a(n-46) -16777216*a(n-47)

%e Some solutions for n=3

%e ..0..1....1..1....0..0....0..0....1..0....0..1....1..0....1..0....0..1....0..0

%e ..1..0....0..0....1..1....0..0....1..1....1..0....0..1....1..1....1..1....1..1

%e ..1..0....0..0....1..1....1..0....0..1....0..1....0..0....1..0....1..0....0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Dec 06 2012