login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220149
Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array
1
10, 50, 254, 1174, 5410, 24684, 108169, 448881, 1761976, 6564622, 23314449, 79243936, 258638752, 812875058, 2465906695, 7234818015, 20565976895, 56733702403, 152106586332, 396892051129, 1009207780356, 2503839951948
OFFSET
1,1
COMMENTS
Column 4 of A220153
LINKS
FORMULA
Empirical: a(n) = (1/552610124608731372158976000000)*n^29 + (1/7622208615292846512537600000)*n^28 + (1/272221736260458804019200000)*n^27 + (1/1878686930714001408000000)*n^26 + (463/23266815064996478976000000)*n^25 + (127/372269041039943663616000)*n^24 + (97193/2443015581824630292480000)*n^23 + (1458253/2124361375499678515200000)*n^22 + (293509/55178217545446195200000)*n^21 + (1203901/1051013667532308480000)*n^20 + (19197187/20232013099996938240000)*n^19 - (215771663/10648427947366809600000)*n^18 + (47996570583761/2907020829631139020800000)*n^17 - (3130777943459/13680098021793595392000)*n^16 + (352784890291/174491046196346880000)*n^15 + (12242591085947/145409205163622400000)*n^14 - (2308802430337703/1064842794736680960000)*n^13 + (63970460933829533/2129685589473361920000)*n^12 - (7607446827742849/82297057418634240000)*n^11 - (845289139000912665797/289685642113592524800000)*n^10 + (16663286001178049022791/284512684218706944000000)*n^9 - (300232887874952342719/602143247023718400000)*n^8 + (10527514392059792417183/6059066423176166400000)*n^7 + (113898768509462767685501/13464592051502592000000)*n^6 - (19927257308688059839763/149570053306486312500)*n^5 + (32438984170527374840711/44394125966910720000)*n^4 - (955894333256214244573/455832543410244000)*n^3 + (2762815941001472611/964724959598400)*n^2 - (432088153285363/1164544781400)*n - 2315 for n>4
EXAMPLE
Some solutions for n=3
..0..0..0..0....2..2..0..0....2..1..0..1....1..0..0..1....1..1..0..1
..2..2..0..0....2..2..2..2....2..2..0..0....2..0..0..0....1..1..0..0
..2..2..2..2....2..2..2..2....2..2..2..2....2..2..1..0....2..2..0..0
CROSSREFS
Sequence in context: A003207 A095687 A204272 * A154410 A060156 A000450
KEYWORD
nonn
AUTHOR
R. H. Hardin Dec 06 2012
STATUS
approved