Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #66 Sep 08 2022 08:46:04
%S 6,5,4,8,0,6,2,9,4,0,2,4,7,8,2,4,4,3,7,7,1,4,0,9,3,3,4,9,4,2,8,9,9,6,
%T 2,6,2,6,2,1,1,3,5,1,8,7,3,8,4,1,3,5,1,4,8,9,4,0,1,6,8,8,1,9,1,4,8,5,
%U 7,6,2,0,4,7,3,8,2,3,9,1,3,7,7,9,0,5,6
%N Decimal expansion of Gamma(1/7).
%C (A220086/A220605)*(A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
%C A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).
%C Continued fraction expansion: 6, 1, 1, 4, 1, 2, 2, 1, 5, 1, 10, 7, 1,...
%H Vincenzo Librandi, <a href="/A220086/b220086.txt">Table of n, a(n) for n = 1..1000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function#General_rational_arguments">Particular values of the Gamma function: General rational arguments</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function#Products">Particular values of the Gamma function: Products</a>
%H <a href="/index/Ga#gamma_function">Index to sequences related to the Gamma function</a>
%F Equals Pi*csc(Pi/7)/A220607, where csc is the cosecant function.
%e 6.5480629402478244377140933494289962626211351873841351...
%t RealDigits[Gamma[1/7], 10, 90][[1]]
%o (Maxima) fpprec:90; ev(bfloat(gamma(1/7)));
%o (PARI) default(realprecision, 100); gamma(1/7) \\ _G. C. Greubel_, Mar 10 2018
%o (Magma) SetDefaultRealField(RealField(100)); Gamma(1/7); // _G. C. Greubel_, Mar 10 2018
%K nonn,cons
%O 1,1
%A _Bruno Berselli_, Dec 12 2012