login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220057
Number of tilings of a 7 X n rectangle using right trominoes and 1 X 1 tiles.
2
1, 1, 655, 17511, 1328849, 65564239, 3814023955, 207866584389, 11621270470141, 643234164533111, 35743258143250665, 1983110281248178907, 110094091718725808219, 6110504997318928433203, 339180718810796793005395, 18826477870730711026769043
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (31, 1688, -11130, -459918, 3166506, 40112677, -345723568, -1333668560, 18915874110, -20132638419, -340706701381, 1131454106758, 1800169591293, -14547686180172, 10887029502746, 77700424321275, -170596686592062, -132867339076434, 814120637502953, -408118945300204, -1874303491278113, 2371447568852003, 2065885358158550, -4510347925558337, -1768155209701568, 5626569971126797, 3093435933277591, -8190510139279992, -2502197734475072, 9273148424569143, -314261646620241, -5569775487698427, 516945589065495, 1847002437609681, 588598730671956, -502432621307848, -485326816160748, 41192473052820, 191502873476778, 53306213357242, -44398553938820, -28149773265720, 14071419586760, 5403011349240, -6450496694256, -6085229826624, -1539089548288, -55320676736, 84819354752, 9551531264, 6799316992, 3599682560, 134983680, -12386304, 1048576).
FORMULA
G.f.: see Maple program.
MAPLE
gf:= (196608*x^53 +15716352*x^52 +82890752*x^51 -81387520*x^50 +2420729856*x^49 -5502464896*x^48 +11135136384*x^47 -2587529280*x^46 -242120057280*x^45 -391566462048*x^44 -677756970360*x^43 -26891699024*x^42 +3419049690968*x^41 -898216784632*x^40 -8630220265938*x^39 +11892744055744*x^38 +12674156157904*x^37
-23326232274170*x^36 -8460520836030*x^35 -49526668612724*x^34 -52615082821909*x^33 +385796302646490*x^32 -89063359404187*x^31 -689833337938642*x^30 +276301559560831*x^29 +939553216589439*x^28 -751421966953043*x^27 -387235565854614*x^26 +367601964623911*x^25 +391200153596741*x^24 -321438046442330*x^23 -254149045627282*x^22
+327959797230961*x^21 -30793906263310*x^20 -105485377717340*x^19 +46988439121753*x^18 +10650397716161*x^17 -12878278811627*x^16 +1803973124746*x^15 +1212527797540*x^14 -447484692550*x^13 +13047687869*x^12 +14482637535*x^11 -3330884126*x^10 +1108885391*x^9 -182374621*x^8 -34669281*x^7 +8700029*x^6 +605086*x^5 -151416*x^4 -6648*x^3 +1064*x^2 +30*x -1) /
(1048576*x^55 -12386304*x^54 +134983680*x^53 +3599682560*x^52 +6799316992*x^51 +9551531264*x^50 +84819354752*x^49 -55320676736*x^48 -1539089548288*x^47 -6085229826624*x^46 -6450496694256*x^45 +5403011349240*x^44 +14071419586760*x^43 -28149773265720*x^42 -44398553938820*x^41 +53306213357242*x^40 +191502873476778*x^39
+41192473052820*x^38 -485326816160748*x^37 -502432621307848*x^36 +588598730671956*x^35 +1847002437609681*x^34 +516945589065495*x^33 -5569775487698427*x^32 -314261646620241*x^31 +9273148424569143*x^30 -2502197734475072*x^29 -8190510139279992*x^28 +3093435933277591*x^27 +5626569971126797*x^26 -1768155209701568*x^25 -4510347925558337*x^24 +2065885358158550*x^23 +2371447568852003*x^22 -1874303491278113*x^21
-408118945300204*x^20 +814120637502953*x^19 -132867339076434*x^18 -170596686592062*x^17 +77700424321275*x^16 +10887029502746*x^15 -14547686180172*x^14 +1800169591293*x^13 +1131454106758*x^12 -340706701381*x^11 -20132638419*x^10 +18915874110*x^9 -1333668560*x^8 -345723568*x^7 +40112677*x^6 +3166506*x^5 -459918*x^4 -11130*x^3 +1688*x^2 +31*x -1):
a:= n-> coeff (series (gf, x, n+1), x, n):
seq(a(n), n=0..30);
CROSSREFS
Column k=7 of A220054.
Sequence in context: A265737 A065759 A280445 * A194653 A252671 A252672
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 03 2012
STATUS
approved