login
A219963
Numbers which do not reach zero under either of the iterations: x -> floor(sqrt(x)) * (x - floor(sqrt(x))^2) or y -> ceiling(sqrt(y)) * (ceiling(sqrt(y))^2 - y).
2
2897, 3159, 3183, 4004, 6335, 7025, 8163, 8237, 8621, 9234, 12204, 12963, 13381, 14340, 15217, 16191, 16438, 17474, 17763, 17972, 18065, 18990, 19677, 19848, 20345, 20803, 21426, 21539, 22022, 25834, 26872, 27175, 28052, 28929, 28996, 29295, 30511, 30991
OFFSET
1,1
COMMENTS
Intersection of A219303 and A219960.
Like the parent sequences, this sequence has pairs of consecutive integers; The first of these pairs is 89971 and 89972.
It is possible, assuming the infinite-pairs conjectures are true for both parent sequences, that there may also be an infinite number of pairs here, but even then that is not guaranteed.
LINKS
CROSSREFS
Sequence in context: A235580 A285756 A248109 * A340201 A235102 A252267
KEYWORD
nonn
AUTHOR
Carl R. White, Dec 02 2012
STATUS
approved