login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219916
Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal, diagonal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array.
1
6, 7, 24, 64, 147, 308, 606, 1144, 2097, 3761, 6628, 11503, 19682, 33216, 55293, 90778, 146960, 234565, 369105, 572645, 876083, 1322052, 1968568, 2893564, 4200467, 6024993, 8543354, 11982091, 16629768, 22850784, 31101583, 41949566, 56095034
OFFSET
1,1
COMMENTS
Row 3 of A219915.
LINKS
FORMULA
Empirical: a(n) = (1/362880)*n^9 - (1/10080)*n^8 + (139/60480)*n^7 - (23/720)*n^6 + (5917/17280)*n^5 - (3307/1440)*n^4 + (921359/90720)*n^3 - (391/35)*n^2 - (76861/1260)*n + 182 for n>5.
Conjectures from Colin Barker, Jul 29 2018: (Start)
G.f.: x*(6 - 53*x + 224*x^2 - 581*x^3 + 1007*x^4 - 1204*x^5 + 997*x^6 - 554*x^7 + 179*x^8 + 2*x^9 - 47*x^10 + 43*x^11 - 27*x^12 + 11*x^13 - 2*x^14) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>15.
(End)
EXAMPLE
Some solutions for n=3:
..1..0..0....1..0..0....1..0..0....1..1..1....2..1..1....1..0..0....1..0..0
..1..0..0....1..0..0....1..0..0....1..1..1....2..1..1....1..0..0....1..0..0
..1..1..1....1..0..0....2..1..1....2..1..1....2..1..1....2..2..2....2..0..0
CROSSREFS
Cf. A219915.
Sequence in context: A288771 A067151 A333550 * A135987 A259088 A200179
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 01 2012
STATUS
approved