Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 28 2018 12:27:45
%S 10,21,47,129,292,600,1158,2148,3863,6784,11679,19763,32938,54144,
%T 87860,140803,222883,348483,538145,820756,1236342,1839593,2704258,
%U 3928566,5641847,8012546,11257843,15655113,21555482,29399758,39737040,53246333
%N Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array.
%C Row 3 of A219883.
%H R. H. Hardin, <a href="/A219884/b219884.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/362880)*n^9 - (1/13440)*n^8 + (17/12096)*n^7 - (37/2880)*n^6 + (1813/17280)*n^5 + (1579/5760)*n^4 - (76849/9072)*n^3 + (768487/10080)*n^2 - (590021/2520)*n + 217 for n>6.
%F Conjectures from _Colin Barker_, Jul 28 2018: (Start)
%F G.f.: x*(10 - 79*x + 287*x^2 - 596*x^3 + 697*x^4 - 265*x^5 - 504*x^6 + 984*x^7 - 895*x^8 + 565*x^9 - 351*x^10 + 273*x^11 - 206*x^12 + 112*x^13 - 36*x^14 + 5*x^15) / (1 - x)^10.
%F a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>16.
%F (End)
%e Some solutions for n=3:
%e ..1..0..0....1..0..0....0..0..0....0..0..0....1..1..1....1..0..0....0..0..0
%e ..1..0..1....1..0..1....0..0..0....0..0..0....1..0..1....1..0..0....0..0..0
%e ..2..1..2....1..0..0....2..2..2....2..1..2....1..0..0....1..0..1....0..1..0
%Y Cf. A219883.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 30 2012