login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x^4*(1-3*x^2-x^3)/((1+x)*(1-2*x)*(1-x-2*x^2)).
1

%I #31 Feb 14 2024 05:19:36

%S 0,0,0,0,1,2,4,9,18,39,80,169,350,731,1516,3149,6522,13503,27912,

%T 57649,118934,245155,504868,1038869,2135986,4388487,9009984,18486009,

%U 37904078,77672299,159072860,325602269,666117610,1362061391,2783775096,5686854849,11612318982

%N Expansion of x^4*(1-3*x^2-x^3)/((1+x)*(1-2*x)*(1-x-2*x^2)).

%H Vincenzo Librandi, <a href="/A219755/b219755.txt">Table of n, a(n) for n = 0..1000</a>

%H M. H. Albert, M. D. Atkinson and Robert Brignall, <a href="http://arxiv.org/abs/1206.3183">The enumeration of three pattern classes</a>, arXiv:1206.3183 [math.CO] (2012), p. 17 (Lemma 4.6).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-4,-4).

%F G.f.: x^4*(1-3*x^2-x^3)/((1+x)*(1-2*x)*(1-x-2*x^2)).

%F a(n) = (2^(n-5)*(3*n+38)-(3*n-14)*(-1)^n)/27 with n>3, a(0)=a(1)=a(2)=a(3)=0. [_Bruno Berselli_, Nov 29 2012]

%t CoefficientList[Series[x^4 (1 - 3 x^2 - x^3)/((1 + x) (1 - 2 x) (1 - x - 2 x^2)), {x, 0, 36}], x] (* _Bruno Berselli_, Nov 30 2012 *)

%o (Maxima) makelist(coeff(taylor(x^4*(1-3*x^2-x^3)/((1+x)*(1-2*x)*(1-x-2*x^2)), x, 0, n), x, n), n, 0, 36); /* _Bruno Berselli_, Nov 29 2012 */

%o (Magma) I:=[0, 0, 0, 0, 1, 2, 4, 9]; [n le 8 select I[n] else 2*Self(n-1) + 3*Self(n-2) - 4*Self(n-3) - 4*Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Dec 15 2012

%Y Cf. A219751-A219759, A219837.

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_, Nov 28 2012