%I #6 Aug 22 2013 14:03:53
%S 12,60,387,2229,13322,78661,466288,2760690,16350693,96830726,
%T 573456240,3396136349,20112704280,119112043349,705408898268,
%U 4177593432263,24740667779362,146519915909536,867724589734469,5138864287202152
%N Unmatched value maps: number of nX5 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nX5 array
%C Column 5 of A219741
%H R. H. Hardin, <a href="/A219738/b219738.txt">Table of n, a(n) for n = 1..69</a>
%F Empirical: a(n) = a(n-1) +21*a(n-2) +48*a(n-3) +14*a(n-4) -69*a(n-5) -38*a(n-6) +68*a(n-7) +13*a(n-8) -57*a(n-9) +37*a(n-10) -8*a(n-11) -2*a(n-12) +a(n-13) for n>14
%F Zeilberger's Maple code (see links in A228285) would give a proof that this recurrence is correct. - _N. J. A. Sloane_, Aug 22 2013
%e Some solutions for n=3
%e ..0..1..0..0..0....0..1..0..0..0....1..0..1..0..0....0..0..1..0..0
%e ..0..0..1..0..0....0..0..0..0..1....0..0..0..0..0....0..0..0..0..1
%e ..1..0..0..1..0....0..1..0..0..0....1..0..1..0..0....0..1..0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Nov 26 2012