%I #4 Nov 26 2012 05:32:15
%S 10,45,297,1860,9674,46026,207161,881386,3529403,13308249,47441049,
%T 160715914,520052472,1614574538,4827357204,13942039190,38993642992,
%U 105830455516,279212564425,717166808833,1795734297356,4388518752029
%N Number of nX3 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 nX3 array
%C Column 3 of A219714
%H R. H. Hardin, <a href="/A219709/b219709.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/8841761993739701954543616000000)*n^29 + (1/25407362050976155041792000000)*n^28 + (1/176337966808394366976000000)*n^27 + (31/67215243521100939264000000)*n^26 + (857/33842640094540333056000000)*n^25 + (6701/6204484017332394393600000)*n^24 + (3574927/91972351315750787481600000)*n^23 + (220903/177030114624973209600000)*n^22 + (6281531/176570296145427824640000)*n^21 + (20705161/24523652242420531200000)*n^20 + (58083753499/3237122095999510118400000)*n^19 + (2538631661/7098951964911206400000)*n^18 + (289839269287913/46512333274098224332800000)*n^17 + (22246893795479/228001633696559923200000)*n^16 + (3860442385381/2733286318040678400000)*n^15 + (50577444339493/2714305163054284800000)*n^14 + (3481065292809707/21296855894733619200000)*n^13 + (10517832262098823/3549475982455603200000)*n^12 - (596735921292429571/289685642113592524800000)*n^11 + (34647394351532996977/96561880704530841600000)*n^10 - (117505131104511891379/59897407203938304000000)*n^9 + (509446773110507960443/21075013645830144000000)*n^8 - (5268714537269678496811/28513253756123136000000)*n^7 + (25268032796181630398857/13464592051502592000000)*n^6 - (281231423663326828835501/27847224470153088000000)*n^5 + (10350542927781225635699/340354965746315520000)*n^4 + (4290821665716749/96329785167000)*n^3 - (548747313816628007/964724959598400)*n^2 + (1605025443530933/1164544781400)*n - 1020 for n>5
%e Some solutions for n=3
%e ..2..1..1....0..0..0....2..1..1....2..0..0....1..0..0....2..1..1....1..0..0
%e ..2..1..1....0..0..3....2..1..1....2..0..2....1..0..0....2..1..1....1..0..0
%e ..3..1..1....3..2..2....1..0..0....2..2..3....2..0..1....2..1..1....0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Nov 26 2012