login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219687
Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal, vertical or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array.
1
6, 9, 31, 87, 208, 452, 922, 1799, 3394, 6234, 11196, 19713, 34085, 57937, 96878, 159429, 258304, 412146, 647840, 1003547, 1532627, 2308645, 3431682, 5036203, 7300766, 10459890, 14818436, 20768893, 28812001, 39581185, 53871318, 72672377
OFFSET
1,1
COMMENTS
Row 3 of A219686.
LINKS
FORMULA
Empirical: a(n) = (1/181440)*n^9 - (1/4032)*n^8 + (31/4320)*n^7 - (37/288)*n^6 + (14137/8640)*n^5 - (7859/576)*n^4 + (3420947/45360)*n^3 - (240133/1008)*n^2 + (63709/180)*n - 79 for n>6.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(6 - 51*x + 211*x^2 - 538*x^3 + 913*x^4 - 1055*x^5 + 824*x^6 - 413*x^7 + 110*x^8 + 8*x^9 - 27*x^10 + 23*x^11 - 12*x^12 + x^13 + 3*x^14 - x^15) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>15.
(End)
EXAMPLE
Some solutions for n=3:
..2..0..0....1..0..0....2..1..1....1..0..0....1..0..0....2..0..0....1..1..1
..2..0..0....0..0..0....2..1..1....1..0..0....1..0..0....2..0..0....1..1..1
..2..2..2....0..0..2....2..2..2....1..1..2....2..2..2....2..0..0....1..1..1
CROSSREFS
Cf. A219686.
Sequence in context: A179908 A180325 A192425 * A147415 A217048 A105866
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 25 2012
STATUS
approved