login
Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..2 nX4 array
1

%I #4 Nov 24 2012 08:24:29

%S 10,54,582,5072,37787,248473,1468544,7970617,40301719,191514623,

%T 860805160,3678654305,15012582592,58726794268,220928309421,

%U 801577867128,2812010911482,9559538273794,31555053375040,101317202514244

%N Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..2 nX4 array

%C Column 4 of A219627

%H R. H. Hardin, <a href="/A219623/b219623.txt">Table of n, a(n) for n = 1..182</a>

%F Empirical: a(n) = (1/344830988681557574190619140204815973292263509852160000000000)*n^48 + (1/3918533962290426979438853865963817878321176248320000000000)*n^47 + (1/114637961662751853121881363100005310270034411520000000000)*n^46 + (1/108500880603610153797699012694474117972230144000000000)*n^45 + (953/3127378323280527962404265660017195165081927680000000000)*n^44 + (3469/219691865684995765954018662067323627299143680000000000)*n^43 + (10651/1028053256892351145275470199691106026782720000000000)*n^42 - (309983/2593857448159162889618109426912944436805632000000000)*n^41 + (439744787/16448852110277618324407523195057696428523520000000000)*n^40 + (80851249/17801787998135950567540609518460710420480000000000)*n^39 - (43201580189/193309159415655770906498670027387458027520000000000)*n^38 + (12857454899/554954524638246232267460296729341984768000000000)*n^37 + (12032252281481/64344727316164225308848774945104786882560000000000)*n^36 - (1517934172034681/32172363658082112654424387472552393441280000000000)*n^35 + (27958749221617453/4021545457260264081803048434069049180160000000000)*n^34 - (8965301105303/29791294449227596966848982542817689600000000)*n^33 + (4076865954501944137/410492678253041309785319138405772165120000000000)*n^32 + (1744758336485512889/6018025375623290807037857738973511680000000000)*n^31 - (36849139313811932390287/896297521266217214712702876801313013760000000000)*n^30 + (13861600459779223475747/5014251867223592809581554555531821056000000000)*n^29 - (16536492408730124350751921/159988198522164533255005787339788124160000000000)*n^28 + (11164117671998339289730817/5887011633932461180379000832849346560000000000)*n^27 + (14406789229466160428751881081/200498030840276706739446355288003706880000000000)*n^26 - (1201700128131188236755345060331/160398424672221365391557084230402965504000000000)*n^25 + (42581617107829978062642737618957023/125110771244332665005414525699714313093120000000000)*n^24 - (100718987090835620192512108287853/11238840392052880435269001589985116160000000000)*n^23 + (4680379156783928282867403919315171/61813622156290842393979508744918138880000000000)*n^22 + (24259575751052348769485419280143/4599227839009735297171094400663552000000000)*n^21 - (29753618210952328230693140663231575859/99588613474024134968078097422368112640000000000)*n^20 + (3009641799200769134018705832256330439/357375407203435891033773076874526720000000000)*n^19 - (66256594449584006776492474225852840373311/502693182157533010225381054258631147520000000000)*n^18 + (88380435586002442473209845040854517/939929662610846659110319461236736000000000)*n^17 + (57671765228606394933362829456413137433389871/1005386364315066020450762108517262295040000000000)*n^16 - (20920669133072437466318624156062213866934963/11968885289465071672032882244253122560000000000)*n^15 + (4963445108794531768036812734755380737922281/169599589121974699806133958926663680000000000)*n^14 - (5815938814474255665221601167249436082213/22192783700533879451215876168089600000000)*n^13 - (4369096024629201006959127029314715102971703293/8749091578944981832750120844321095680000000000)*n^12 + (708152031624733559769662924594266512333109501501/12394546403505390929729337862788218880000000000)*n^11 - (112532718493928914075310004310727696886977528543/114764318550975841941938313544335360000000000)*n^10 + (238808231338814536231631882107986279289942259/24840761591120312108644656611328000000000)*n^9 - (34273204366357974607569578964997769926090631008651/646983845831126308947677242606190592000000000)*n^8 + (26357585224890019957295488488124751502394392839/980278554289585316587389761524531200000000)*n^7 + (17995663420157904494189969853917319509643476382319/7727862602982897579097255953351720960000000)*n^6 - (31607233936466738684068817408701551028691463961/1415359451095768787380449808306176000000)*n^5 + (99905757261067942906133280740702371371554459/888537154358013914980168163020800000)*n^4 - (608886870050505566500134203037796717631/1854364208944849142207546880000)*n^3 + (2999611209052137282854421627968881199/6423923184297018269373504000)*n^2 + (3416365005880332140562209/916605887088434400)*n - 611360786 for n>12

%e Some solutions for n=3

%e ..0..0..0..1....1..1..1..2....0..0..1..1....0..0..0..1....0..0..0..1

%e ..0..0..0..2....1..1..0..0....0..0..1..1....0..0..0..1....0..1..0..0

%e ..0..2..1..1....0..0..0..0....1..1..1..1....0..1..0..0....2..2..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Nov 24 2012