login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219591
Number of nX4 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array
1
10, 34, 233, 1114, 4350, 16117, 60252, 226309, 831045, 2932198, 9899904, 32047091, 99786646, 299774977, 871181292, 2454943142, 6722356023, 17921513868, 46593529264, 118305418513, 293738371262, 713963398966, 1700512384149
OFFSET
1,1
COMMENTS
Column 4 of A219595
LINKS
FORMULA
Empirical: a(n) = (1/81868166608700944023552000000)*n^29 - (67/33876482734634873389056000000)*n^28 + (1093/7259246300278901440512000000)*n^27 - (1/940621483677214310400000)*n^26 - (47119/62044840173323943936000000)*n^25 + (1869449/24817936069329577574400000)*n^24 - (296052733/86862776242653521510400000)*n^23 + (54522829/1510656978133104721920000)*n^22 + (167845631/29428382690904637440000)*n^21 - (6024199483/14013515567097446400000)*n^20 + (8467657127141/539520349333251686400000)*n^19 - (2932958591041/11358323143857930240000)*n^18 - (12704169291856247/2584018515227679129600000)*n^17 + (47097728297965439/101334059420693299200000)*n^16 - (1011984217642567843/65143323913302835200000)*n^15 + (364057784069101777/1240825217396244480000)*n^14 - (56366476163066975107/28395807859644825600000)*n^13 - (904186645491855977543/14197903929822412800000)*n^12 + (6474020741492280364763/2600993419650662400000)*n^11 - (1166634295507637525043197/25749834854541557760000)*n^10 + (717109824273215889502078381/1517400982499770368000000)*n^9 - (6363461015557560073335283/4014288313491456000000)*n^8 - (11656748989007326967754487087/323150209236062208000000)*n^7 + (3938184473751556080945711017/5385836820601036800000)*n^6 - (163994244837799128753946400473/22690331049754368000000)*n^5 + (30438522365937746680601642677/680709931492631040000)*n^4 - (60274458996187160134975931/347300985455424000)*n^3 + (102759246483272304467447/275635702742400)*n^2 - (195156984499999649389/776363187600)*n - 310620487 for n>13
EXAMPLE
Some solutions for n=3
..1..1..0..0....2..2..0..0....0..0..0..0....1..1..0..0....1..1..0..0
..1..1..1..0....2..2..1..0....0..0..0..0....1..1..1..0....1..1..1..0
..2..2..2..2....2..2..1..1....2..1..1..1....2..1..0..0....1..1..1..2
CROSSREFS
Sequence in context: A232902 A001890 A221810 * A272365 A230895 A254674
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 23 2012
STATUS
approved