Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 23 2012 10:42:44
%S 10,51,415,2234,10226,43194,175054,681294,2520724,8826995,29312128,
%T 92766392,281352528,821894587,2322377790,6369721171,17006832588,
%U 44306213351,112846664535,281447430087,688297677269,1652410927948
%N Number of nX3 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 nX3 array
%C Column 3 of A219578
%H R. H. Hardin, <a href="/A219573/b219573.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/552610124608731372158976000000)*n^29 + (1/3811104307646423256268800000)*n^28 + (1/129629398219266097152000000)*n^27 - (31/604937191689908453376000000)*n^26 + (877/46533630129992957952000000)*n^25 + (239/372269041039943663616000)*n^24 + (33503/24430155818246302924800000)*n^23 + (5591879/8497445501998714060800000)*n^22 - (231247/12261826121210265600000)*n^21 + (12158051/7357095672726159360000)*n^20 + (2445075107/202320130999969382400000)*n^19 - (56854384157/21296855894733619200000)*n^18 + (137907619368839/1162808331852455608320000)*n^17 - (135165120005483/68400490108967976960000)*n^16 - (48023952636601/4071457744581427200000)*n^15 + (28424142664663183/16285830978325708800000)*n^14 - (84408492721776677/1638219684210278400000)*n^13 + (724628434108627231/851874235789344768000)*n^12 - (155602913726221679243/26335058373962956800000)*n^11 - (48964593179833669647503/579371284227185049600000)*n^10 + (76233590865481207417073/23709390351558912000000)*n^9 - (432565114735770248700887/8430005458332057600000)*n^8 + (85694644782598196110159/166229531500032000000)*n^7 - (86412687664576691056232021/26929184103005184000000)*n^6 + (464222833288478856269869001/68070993149263104000000)*n^5 + (182634752184978211634207821/2042129794477893120000)*n^4 - (5379349472699128084793279/4862213796375936000)*n^3 + (121933503571229586701/19688264481600)*n^2 - (14552066068591182739/776363187600)*n + 24775150 for n>10
%e Some solutions for n=3
%e ..0..0..0....1..0..0....1..1..1....2..0..0....1..0..0....2..1..0....1..0..0
%e ..0..0..0....0..0..0....3..1..1....2..2..0....1..1..0....1..0..0....1..1..0
%e ..1..1..0....3..0..0....3..2..1....2..2..3....2..1..2....1..0..0....3..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Nov 23 2012