Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 27 2014 09:16:05
%S 0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,2,0,1,0,0,0,1,1,1,1,0,
%T 0,0,0,1,0,0,0,0,0,2,1,0,0,3,0,2,0,1,1,1,1,2,2,0,0,0,0,1,1,0,0,1,0,0,
%U 1,1,0,3,0,1,1,1,0,1,1,2,1,1,2,0,0,2,1,2,1,1,0,1,1,2,2,3,0,0,0,0
%N Number of odd prime pairs {p,q} (p>q) such that p+(1+(n mod 2))q=n and ((p-1-(n mod 2))/q)=((q+1)/p)=1 where (-) denotes the Legendre symbol.
%C For any integer m, define s(m) as the smallest positive integer s such that for each n=s,s+1,... there are primes p>q>2 with p+(1+(n mod 2))q=n and ((p-(1+(n mod 2))m)/q)=((q+m)/p)=1. If such a positive integer s does not exist, then we set s(m)=0.
%C Zhi-Wei Sun has the following general conjecture: s(m) is always positive. In particular, s(0)=1239,
%C s(1)=1470, s(-1)=2192, s(2)=1034, s(-2)=1292,
%C s(3)=1698, s(-3)=1788, s(4)=848, s(-4)=1458,
%C s(5)=1490, s(-5)=2558, s(6)=1115, s(-6)=1572,
%C s(7)=1550, s(-7)=932, s(8)=825, s(-8)=2132,
%C s(9)=1154, s(-9)=1968, s(10)=1880, s(-10)=1305,
%C s(11)=1052, s(-11)=1230, s(12)=2340, s(-12)=1428,
%C s(13)=2492, s(-13)=2673, s(14)=1412, s(-14)=1638,
%C s(15)=1185, s(-15)=1230, s(16)=978, s(-16)=1605,
%C s(17)=1154, s(-17)=1692, s(18)=1757, s(-18)=2292,
%C s(19)=1230, s(-19)=2187, s(20)=2048, s(-20)=1372,
%C s(21)=1934, s(-21)=1890, s(22)=1440, s(-22)=1034,
%C s(23)=1964, s(-23)=1322, s(24)=1428, s(-24)=2042,
%C s(25)=1734, s(-25)=1214, s(26)=1260, s(-26)=1230,
%C s(27)=1680, s(-27)=1154, s(28)=1652, s(-28)=1808,
%C s(29)=1112, s(-29)=1670, s(30)=1820, s(-30)=1284.
%C Note that s(1)=1470 means that a(n)>0 for all n=1470,1471,... That s(0)=1239 is related to a conjecture of _Olivier Gérard_ and Zhi-Wei Sun.
%C If we replace ((p-1-(n mod 2))/q)=((q+1)/p)=1 in the definition of a(n) by ((p-1)/q)=((q+1)/p)=1, then the new a(n) seems positive for any n>1181.
%H Zhi-Wei Sun, <a href="/A219558/b219558.txt">Table of n, a(n) for n = 1..10000</a>
%H Olivier Gérard and Zhi-Wei Sun, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;c08d598.1211">Refining Goldbach's conjecture by using quadratic residues</a>, a message to Number Theory List, Nov. 19, 2012.
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1211.1588">Conjectures involving primes and quadratic forms</a>, arXiv:1211.1588.
%e a(14)=1 since 14=11+3 with ((11-1)/3)=((3+1)/11)=1.
%e a(31)=1 since 31=17+2*7 with ((17-2)/7)=((7+1)/17)=1.
%t a[n_]:=a[n]=Sum[If[PrimeQ[n-(1+Mod[n,2])Prime[k]]==True&&JacobiSymbol[n-(1+Mod[n,2])(Prime[k]+1),Prime[k]]==1&&JacobiSymbol[Prime[k]+1,n-(1+Mod[n,2])Prime[k]]==1,1,0],{k,2,PrimePi[(n-1)/(2+Mod[n,2])]}]
%t Do[Print[n," ",a[n]],{n,1,10000}]
%Y Cf. A002375, A046927, A219055, A219157, A218867, A219185, A218754, A218825, A219052.
%K nonn
%O 1,24
%A _Zhi-Wei Sun_, Nov 23 2012