Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Sep 09 2024 09:35:02
%S 1,3,24,255,3102,40854,566934,8164263,120864390,1827982362,
%T 28122626760,438720097638,6923868098820,110346550539780,
%U 1773394661610258,28707809007278775,467677404522668742,7661583171651546786,126137791939032756960,2085923447593966281378
%N G.f. satisfies A(x) = 1 + x*(A(x)^2 + 2*A(x)^3).
%H G. C. Greubel, <a href="/A219536/b219536.txt">Table of n, a(n) for n = 0..790</a>
%H Elżbieta Liszewska, Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.
%F Let G(x) = (1-x - sqrt(1 - 10*x + x^2)) / (4*x), then g.f. A(x) satisfies:
%F (1) A(x) = (1/x)*Series_Reversion(x/G(x)),
%F (2) A(x) = G(x*A(x)) and G(x) = A(x/G(x)),
%F where G(x) is the g.f. of A103210.
%F Recurrence: 4*n*(2*n+1)*(19*n-26)*a(n) = (2717*n^3 - 6435*n^2 + 4342*n - 840)*a(n-1) + 2*(n-2)*(2*n-3)*(19*n-7)*a(n-2). - _Vaclav Kotesovec_, Dec 28 2013
%F a(n) ~ (3/19)^(1/4) * (5+sqrt(57)) * ((143 + 19*sqrt(57))/16)^n / (16*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Dec 28 2013
%F From _Seiichi Manyama_, Jul 26 2020: (Start)
%F a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(2*n+k+1,n)/(2*n+k+1).
%F a(n) = (1/(2*n+1)) * Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k) * binomial(3*n-k,n-k). (End)
%F From _Seiichi Manyama_, Aug 10 2023: (Start)
%F a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 3^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0.
%F a(n) = (1/n) * Sum_{k=1..n} 3^k * 2^(n-k) * binomial(n,k) * binomial(2*n,k-1) for n > 0. (End)
%F a(n) = (-1)^(n+1) * (3/n) * Jacobi_P(n-1, 1, n+1, -5) for n >= 1. - _Peter Bala_, Sep 08 2024
%e G.f.: A(x) = 1 + 3*x + 24*x^2 + 255*x^3 + 3102*x^4 + 40854*x^5 +...
%e Related expansions:
%e A(x)^2 = 1 + 6*x + 57*x^2 + 654*x^3 + 8310*x^4 + 112560*x^5 +...
%e A(x)^3 = 1 + 9*x + 99*x^2 + 1224*x^3 + 16272*x^4 + 227187*x^5 +...
%e The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
%e G(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 645*x^4 + 4791*x^5 +...+ A103210(n)*x^n +...
%t CoefficientList[1/x*InverseSeries[Series[4*x^2/(1-x-Sqrt[1-10*x+x^2]), {x, 0, 20}], x],x] (* _Vaclav Kotesovec_, Dec 28 2013 *)
%o (PARI) /* Formula A(x) = 1 + x*(A(x)^2 + 2*A(x)^3): */
%o {a(n)=my(A=1);for(i=1,n,A=1+x*(A^2+2*A^3) +x*O(x^n));polcoeff(A,n)}
%o for(n=0,25,print1(a(n),", "))
%o (PARI) /* Formula using Series Reversion: */
%o {a(n)=my(A=1,G=(1-x-sqrt(1-10*x+x^2+x^3*O(x^n)))/(4*x));A=(1/x)*serreverse(x/G);polcoeff(A,n)}
%o for(n=0,25,print1(a(n),", "))
%o (PARI) a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ _Seiichi Manyama_, Jul 26 2020
%o (PARI) a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+1, k)*binomial(3*n-k, n-k))/(2*n+1); \\ _Seiichi Manyama_, Jul 26 2020
%Y Column k=2 of A336574.
%Y Cf. A003168, A103210, A219534, A219535.
%K nonn,easy
%O 0,2
%A _Paul D. Hanna_, Nov 21 2012