login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 nXk array
6

%I #4 Nov 20 2012 21:20:31

%S 2,2,2,3,3,3,4,5,5,4,5,7,11,7,5,6,9,18,18,9,6,7,11,26,35,26,11,7,8,13,

%T 35,58,58,35,13,8,9,15,45,88,107,88,45,15,9,10,17,56,126,179,179,126,

%U 56,17,10,11,19,68,173,281,325,281,173,68,19,11,12,21,81,230,421,550,550,421

%N T(n,k)=Number of nXk arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 nXk array

%C Table starts

%C ..2..2...3...4....5....6.....7.....8.....9....10....11....12....13....14....15

%C ..2..3...5...7....9...11....13....15....17....19....21....23....25....27....29

%C ..3..5..11..18...26...35....45....56....68....81....95...110...126...143...161

%C ..4..7..18..35...58...88...126...173...230...298...378...471...578...700...838

%C ..5..9..26..58..107..179...281...421...608...852..1164..1556..2041..2633..3347

%C ..6.11..35..88..179..325...550...885..1369..2050..2986..4246..5911..8075.10846

%C ..7.13..45.126..281..550...995..1703..2793..4424..6804.10200.14949.21470.30277

%C ..8.15..56.173..421..885..1703..3083..5328..8869.14306.22458.34423.51649.76017

%C ..9.17..68.230..608.1369..2793..5328..9663.16831.28346.46382.74003

%C .10.19..81.298..852.2050..4424..8869.16831.30581.53601.91116

%C .11.21..95.378.1164.2986..6804.14306.28346.53601.97541

%C .12.23.110.471.1556.4246.10200.22458.46382.91116

%H R. H. Hardin, <a href="/A219502/b219502.txt">Table of n, a(n) for n = 1..239</a>

%F Empirical for column k:

%F k=1: a(n) = n for n>1

%F k=2: a(n) = 2*n - 1 for n>1

%F k=3: a(n) = (1/2)*n^2 + (7/2)*n - 4 for n>1

%F k=4: a(n) = (1/6)*n^3 + n^2 + (23/6)*n - 7 for n>2

%F k=5: a(n) = (1/24)*n^4 + (1/4)*n^3 + (35/24)*n^2 + (21/4)*n - 13 for n>2

%F k=6: a(n) = (1/120)*n^5 + (1/24)*n^4 + (13/24)*n^3 + (59/24)*n^2 + (59/20)*n - 17 for n>3

%F k=7: a(n) = (1/720)*n^6 + (1/240)*n^5 + (23/144)*n^4 + (13/16)*n^3 + (331/180)*n^2 + (311/60)*n - 27 for n>3

%e Some solutions for n=3 k=4

%e ..0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0

%e ..0..0..0..0....0..0..0..0....1..0..0..0....1..1..0..0....1..0..0..0

%e ..1..0..0..0....1..1..1..0....1..1..1..0....1..1..1..0....1..0..0..0

%Y Column 1 is A000027

%Y Column 2 is A004273

%Y Column 3 is A056000(n-1) for n>1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Nov 20 2012