

A219434


a(n) is the maximum number m such that A219365(m) is not divisible by n.


0



1966081, 12767708, 7756710936577, 166762837500004, 12767708, 27471403862610413838, 31057143398401, 340744843326260, 166762837500004, 22895635022104088254, 7756710936577, 766556623996809099695470878, 27471403862610413838, 166762837500004, 62114286796801
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

The second article by Myerson provides a Maple algorithm to compute a(n) when omega(n)=1. When omega(n) > 1, the maximum of a(p_i^n_i), with n = Product(p_i^n_i), is used.
Bachman and Kessler (2004) provide a table of a(n) for n < 100 being prime or a power of prime.


LINKS

Table of n, a(n) for n=2..16.
G. Bachman, On divisibility properties of certain multinomial coefficients, Journal of Number Theory, Volume 63, Issue 2, April 1997, Pages 244255.
G. Bachman and T. Kessler, On divisibility properties of certain multinomial coefficients—II, Journal of Number Theory, Volume 106, Issue 1, May 2004, Pages 112.
G. Myerson, What the Least Common Multiple Divides, Journal of Number Theory, Volume 48, Issue 1, July 1994, Pages 8087.
G. Myerson and J. W. Sander, What the Least Common Multiple Divides, II, Journal of Number Theory, Volume 61, Issue 1, November 1996, Pages 6784.


CROSSREFS

Cf. A219365.
Sequence in context: A254552 A254559 A254482 * A345626 A346344 A172791
Adjacent sequences: A219431 A219432 A219433 * A219435 A219436 A219437


KEYWORD

nonn


AUTHOR

Michel Marcus, Nov 20 2012


STATUS

approved



