|
|
A219434
|
|
a(n) is the maximum number m such that A219365(m) is not divisible by n.
|
|
0
|
|
|
1966081, 12767708, 7756710936577, 166762837500004, 12767708, 27471403862610413838, 31057143398401, 340744843326260, 166762837500004, 22895635022104088254, 7756710936577, 766556623996809099695470878, 27471403862610413838, 166762837500004, 62114286796801
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
The second article by Myerson provides a Maple algorithm to compute a(n) when omega(n)=1. When omega(n) > 1, the maximum of a(p_i^n_i), with n = Product(p_i^n_i), is used.
Bachman and Kessler (2004) provide a table of a(n) for n < 100 being prime or a power of prime.
|
|
LINKS
|
Table of n, a(n) for n=2..16.
G. Bachman, On divisibility properties of certain multinomial coefficients, Journal of Number Theory, Volume 63, Issue 2, April 1997, Pages 244-255.
G. Bachman and T. Kessler, On divisibility properties of certain multinomial coefficients—II, Journal of Number Theory, Volume 106, Issue 1, May 2004, Pages 1-12.
G. Myerson, What the Least Common Multiple Divides, Journal of Number Theory, Volume 48, Issue 1, July 1994, Pages 80-87.
G. Myerson and J. W. Sander, What the Least Common Multiple Divides, II, Journal of Number Theory, Volume 61, Issue 1, November 1996, Pages 67-84.
|
|
CROSSREFS
|
Cf. A219365.
Sequence in context: A254552 A254559 A254482 * A345626 A346344 A172791
Adjacent sequences: A219431 A219432 A219433 * A219435 A219436 A219437
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Marcus, Nov 20 2012
|
|
STATUS
|
approved
|
|
|
|