Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 18 2012 14:05:28
%S 6,6,46,174,689,2482,8744,30122,101738,333863,1060075,3255831,9692064,
%T 28025330,78861460,216288179,578998244,1514942606,3879328902,
%U 9733779695,23957650511,57898956666,137513675891,321232670338,738605315409
%N Number of nX6 arrays of the minimum value of corresponding elements and their horizontal, vertical, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..1 nX6 array
%C Column 6 of A219354
%H R. H. Hardin, <a href="/A219352/b219352.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/10333147966386144929666651337523200000000)*n^35 - (1/13419672683618370038528118620160000000)*n^34 + (571/17366635237623772991036388802560000000)*n^33 - (1627/157878502160216118100330807296000000)*n^32 + (4962493/1973481277002701476254135091200000000)*n^31 - (27689/55357118569500742671925248000000)*n^30 + (2477386139/29708320298965398567266549760000000)*n^29 - (157063/13244018589468113397350400000)*n^28 + (2129960783771/1463464054136226530407219200000000)*n^27 - (22729233607303/146346405413622653040721920000000)*n^26 + (717082600292221/49532629524610744106090496000000)*n^25 - (531885401415397/450296632041915855509913600000)*n^24 + (950333039024687447573/11268673216848944284135587840000000)*n^23 - (3342732513667788223/636288719189663708872704000000)*n^22 + (360994647940052684119/1272577438379327417745408000000)*n^21 - (1668973146543393165929/127257743837932741774540800000)*n^20 + (219376247560788924860061751/432676329048971322033438720000000)*n^19 - (35436350869202931198654041/2277243837099849063333888000000)*n^18 + (34635611390804287721049985223/106896504823863503090614272000000)*n^17 - (85373380825913418805958407/117468686619630223176499200000)*n^16 - (82451162609417958792257115916337/262469096665736279909990400000000)*n^15 + (42138816971691640219510531260239/2386082696961238908272640000000)*n^14 - (29028655971158941921093070559149089/46436840179322572599459840000000)*n^13 + (410208635494986300938836326762209/24832534855252712620032000000)*n^12 - (3348360848479607888681912034990812159/10004148807571861047705600000000)*n^11 + (191013401717674381783493620844133187/38111043076464232562688000000)*n^10 - (35651048428010109568894049831868420469/762220861529284651253760000000)*n^9 - (35657768001411688171850810063681/2727575099406994636800000)*n^8 + (313655526607484430976993492182921843749/31979752581523806259200000000)*n^7 - (867565222270098444789012826212334668781/4263967010869840834560000000)*n^6 + (426306934636845760181660424197327560688891/169634820915771834534912000000)*n^5 - (483191813519224880821386546051179743/23056510960573009920000)*n^4 + (2854949392908046676888008200952887794867/24522040438504431863040000)*n^3 - (76525917178425915379922968830965869/196585220767231296000)*n^2 + (82323357186540858884929756997/144403552893600)*n + 144960772198386 for n>31
%e Some solutions for n=3
%e ..0..0..0..1..1..1....0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..0..1..1
%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..0..1..1
%e ..0..0..0..0..0..0....1..1..1..1..0..0....1..1..1..1..1..1....0..0..0..1..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Nov 18 2012