login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*(1 + x^n)^k) ).
5

%I #11 Nov 16 2012 00:44:00

%S 1,1,2,5,13,32,82,201,498,1214,2954,7117,17115,40880,97336,230699,

%T 545068,1283150,3011783,7047353,16445814,38275172,88859213,205796476,

%U 475539242,1096428621,2522704211,5792637135,13275381694,30367439045,69341077367,158059717986,359688534284

%N G.f.: exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*(1 + x^n)^k) ).

%C Compare to the dual g.f. of A218575:

%C exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*(1 + x^k)^n) ).

%H Paul D. Hanna, <a href="/A219230/b219230.txt">Table of n, a(n) for n = 0..1000</a>

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 32*x^5 + 82*x^6 + 201*x^7 +...

%e where

%e log(A(x)) = x/(1*(1-x*(1+x))*(1-x^2*(1+x)^2)*(1-x^3*(1+x)^3)*...) +

%e x^2/(2*(1-x^2*(1+x^2))*(1-x^4*(1+x^2)^2)*(1-x^6*(1+x^2)^3)*...) +

%e x^3/(3*(1-x^3*(1+x^3))*(1-x^6*(1+x^3)^2)*(1-x^9*(1+x^3)^3)*...) +

%e x^4/(4*(1-x^4*(1+x^4))*(1-x^8*(1+x^4)^2)*(1-x^12*(1+x^4)^3)*...) +...

%e Explicitly,

%e log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 81*x^5/5 + 228*x^6/6 + 554*x^7/7 + 1399*x^8/8 + 3313*x^9/9 + 7843*x^10/10 +...

%o (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*prod(k=1, n\m, 1/(1-x^(m*k)*(1+x^m)^k +x*O(x^n))))), n)}

%o for(n=0, 40, print1(a(n), ", "))

%Y Cf. A218575, A219229, A219232.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 15 2012