login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Area A of the cyclic quadrilaterals PQRS with PQ>=QR>=RS>=SP, such that A, the sides, the radius of the circumcircle and the two diagonals are integers.
4

%I #26 May 28 2016 07:24:36

%S 768,936,1200,2856,3072,3744,4536,4800,5016,5376,6696,6912,7056,7560,

%T 7752,8184,8424,9240,10800,11424,11544,12288,12480,12936,14976,16848,

%U 18144,18696,19200,19200,20064,21504,23040,23400,24024,25080,25704,25944,26784,27048,27648,27648,27648,27864,28224,28560,30000,30240,31008,32736,33696,34560,36960,36960,37632,40392,40560,40824,41064,41184,42240,42840,43200

%N Area A of the cyclic quadrilaterals PQRS with PQ>=QR>=RS>=SP, such that A, the sides, the radius of the circumcircle and the two diagonals are integers.

%C Subsequence of A210250.

%C In Euclidean geometry, a cyclic quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed, and the vertices are said to be concyclic.

%C The area A of a cyclic quadrilateral with sides a, b, c, d is given by Brahmagupta’s formula : A = sqrt((s - a)(s -b)(s - c)(s - d)) where s, the semiperimeter is s= (a+b+c+d)/2.

%C The circumradius R (the radius of the circumcircle) is given by:

%C R = sqrt(ab+cd)(ac+bd)(ad+bc)/4A

%C The diagonals of a cyclic quadrilateral have length:

%C p = sqrt((ab+cd)(ac+bd)/(ad+bc))

%C q = sqrt((ac+bd)(ad+bc)/(ab+cd)).

%D Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32.

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/25678790">Solution to Problem S125: Circumradius and Inradius</a>, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.

%H E. Gürel, <a href="http://www.jstor.org/stable/2690677?seq=7">Solution to Problem 1472, Maximal Area of Quadrilaterals</a>, Math. Mag. 69 (1996), 149.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclicQuadrilateral.html">Cyclic Quadrilateral</a>

%e 936 is in the sequence because, with sides (a,b,c,d) = (14,30,40,48) we obtain:

%e s = (14+30+40+48)/2 = 66;

%e A = sqrt((66-14)(66-30)(66-40)(66-48))=936;

%e R = sqrt((14*30+40*48)(14*40+30*48)(14*48+30*40))/(4*936) = 93600/3744 =25;

%e p = sqrt((14*30+40*48)( 14*40+30*48)/( 14*48+30*40)) = 50;

%e q= sqrt((14*40+30*48)( 14*48+30*40)/( 14*30+40*48)) = 40.

%t SMax=10000;

%t Do[

%t Do[

%t x=S^2/(u v w);

%t If[u+v+w+x//OddQ, Continue[]];

%t If[v+w+x<=u, Continue[]];

%t r=Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x]/(4S);

%t If[r//IntegerQ//Not, Continue[]];

%t {a, b, c, d}=(u+v+w+x)/2-{u, v, w, x};

%t If[4S r/(a b+c d)//IntegerQ//Not,Continue[]];

%t If[4S r/(a d+b c)//IntegerQ//Not,Continue[]];

%t (*{a, b, c, d, r, S}//Sow*);

%t S//Sow; Break[]; (*to generate a table, comment out this line and uncomment previous line*)

%t , {u, S^2//Divisors//Select[#, S<=#^2&]&}

%t , {v, S^2/u//Divisors//Select[#, S^2<=u#^3&&#<=u&]&}

%t , {w, S^2/(u v)//Divisors//Select[#, S^2<=u v#^2&&#<=v&]&}

%t ]

%t , {S, 24, SMax, 24}

%t ]//Reap//Last//Last

%t {x, r, a, b, c, d}=.; (* _Albert Lau_, May 25 2016 *)

%Y Cf. A210250.

%K nonn

%O 1,1

%A _Michel Lagneau_, Nov 15 2012

%E Incorrect Mathematica program removed by _Albert Lau_, May 25 2016

%E Missing terms 18144, 20064, 21504 and more term from _Albert Lau_, May 25 2016