login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219192 Area A of the bicentric quadrilaterals such that A, the sides, the radius of the circumcircle and the radius of the incircle are integers. 1
2352, 9408, 21168, 37632, 58800, 69360, 84672, 115248, 150528, 190512, 235200, 253920, 277440, 284592, 338688, 397488, 460992, 529200, 602112, 624240, 645792, 679728, 762048, 849072, 940800, 1015680, 1037232, 1109760, 1138368, 1244208, 1354752, 1470000, 1589952 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Also numbers n such that there exists a decomposition n^2 = a*b*c*d where a,b,c,d are the sides of a bicentric quadrilateral with the area, the inradius and the circumradius integers.
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. If the sides are a, b, c, d, then the area is given by A = sqrt(a*b*c*d). The inradius r of a bicentric quadrilateral is determined by the sides a, b, c, d according to r = sqrt(a*b*c*d)/(a+c) = sqrt(a*b*c*d)/(b+d). The circumradius R (the radius of the circumcircle) is given by R = sqrt((ab+cd)(ac+bd)(ad+bc))/4A.
If n is in this sequence, so is n*k^2 for any k > 0. Thus this sequence is infinite.
In view of the preceding comment, one might call "primitive" the elements of the sequence for which there is no k>1 such that n/k^2 is again a term of the sequence. These elements are 2352, 69360, 253920, 645792,... are listed in A219193.
LINKS
Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
E. Gürel, Solution to Problem 1472, Maximal Area of Quadrilaterals, Math. Mag. 69, 149, 1996.
Martin Josefsson, The area of a Bicentric Quadrilateral, Forum Geometricum (2011) 11:155-164.
Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
Eric Weisstein's World of Mathematics, Bicentric Quadrilateral
EXAMPLE
2352 is in the sequence because, with sides (a,b,c,d) = (56,56,42,42) we obtain :
s = (56+56+42+42)/2 = 98;
A = sqrt(56*56*42*42) = 2352 = sqrt((98-56)(98-56)(98-42)(98-42)) (Brahmagupta’s Formula);
r = 2352/(56+42) =24.
R = sqrt((56*56+42*42)(56*42+56*42)(56*42+56*42))/(4*2352) = 35.
MAPLE
with(numtheory):nn:=15000:for a from 1 to nn do: b:=a: for c from b to nn do: for d from c to c while(sqrt(a*b*c*d)=floor(sqrt(a*b*c*d))) do:s:=(a+b+c+d)/2:a1:=(s-a)*(s-b)*(s-c)*(s-d):a2:=sqrt(a*b*c*d):r1:=a2/(a+c):r2:=a2/(b+d):rr:= sqrt((a*b+c*d) * (a*c+b*d) * (a*d+b*c))/(4*a2):if a1>0 and floor(sqrt(a1))=sqrt(a1) and a2 =floor(a2) and a2=sqrt(a1) and r1=floor(r1) and r2=floor(r2) and r1=r2 and rr =floor(rr) then printf ( "%d %d %d %d %d %d %d\n", a2, a, b, c, d, r1, rr):else fi:od:od:od:
MATHEMATICA
nn=15000; lst={}; Do[s=(2*a+2*d)/2; If[IntegerQ[s], area2=(s-a)*(s-a)*(s-d)*(s-d); area22=a*a*d*d; If[0<area2&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[area22]&&IntegerQ[Sqrt[area22]/(a+d)]&&IntegerQ[Sqrt[(a*a+d*d)*(a*d+a*d)*(a*d+a*d)/((s-a)*(s-a)*(s-d)*(s-d))]/4]], AppendTo[lst, Sqrt[area22]]]], {a, nn}, {d, a}]; Union[lst]
CROSSREFS
Sequence in context: A003552 A173628 A130023 * A234078 A219193 A063517
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 14 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)