login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219162
Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 3.
5
3, 47, 4870847, 562882766124611619513723647
OFFSET
0,1
COMMENTS
Bisection of A001566. Compare the following remarks with A001999.
The present sequence is the case x = 3 of the following general remarks. For other cases see A219163 (x = 4), A219164 (x = 5) and A219165 (x = 6).
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(4^n) + (1/alpha)^(4^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^4 + 4*a(n)^2 - 2 with the initial condition a(0) = x.
We have the product expansion sqrt((x + 2)/(x - 2)) = Product_{n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)).
FORMULA
Let alpha = 1/2*(3 + sqrt(5)) then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A001566(2*n) = A000032(2*4^n).
Product {n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(5).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
PROG
(PARI) a(n)={if(n==0, 3, a(n-1)^4-4*a(n-1)^2+2)} \\ Edward Jiang, Sep 11 2014
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 13 2012
STATUS
approved