%I #16 Oct 06 2024 13:57:46
%S 0,11,244,1838,8303,27680,75418,177978,377149,735091,1340095,2313060,
%T 3814697,6053445,9294114,13867245,20179187,28722900,40089475,54980371,
%U 74220378,98771297,129746337,168425239,216270112,274941996
%N a(n) = floor((n + 1/2)^6).
%C a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/6 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/6), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.
%H Clark Kimberling, <a href="/A219089/b219089.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (7,-22,42,-57,63,-64,64,-64,64,-64,64,-64,64,-64,64,-63,57,-42,22,-7,1).
%F a(n) = [(n + 1/2)^6].
%t Table[Floor[(n + 1/2)^6], {n, 0, 100}]
%t LinearRecurrence[{7,-22,42,-57,63,-64,64,-64,64,-64,64,-64,64,-64,64,-63,57,-42,22,-7,1},{0,11,244,1838,8303,27680,75418,177978,377149,735091,1340095,2313060,3814697,6053445,9294114,13867245,20179187,28722900,40089475,54980371,74220378},30] (* _Harvey P. Dale_, Oct 06 2024 *)
%Y Cf. A219085.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Jan 01 2013