OFFSET
1,1
COMMENTS
Entry 17a from July 9, 1796 in Gauss's Mathematical Diary: "Summa trium quadratorum continue proportionalium numquam primus esse potest: conspicuum exemplum novimus et quod congruum videtur. Confidamus." Paul Bachmann explains that this note is based on Gauss's discovery of this factorization: n^4 + n^2*k^2 + k^4 = (n^2 + n*k + k^2) * (n^2 - n*k + k^2).
REFERENCES
Carl Friedrich Gauss (Hans Wussing, ed.), Mathematisches Tagebuch 1796-1814, Ostwalds Klassiker der Exakten Wissenschaften, Leipzig (1976, 1979), pp. 43, 63, 90.
LINKS
Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Wikipedia, Gauss's diary
Wikipedia, Paul Gustav Heinrich Bachmann
EXAMPLE
The triangle begins:
. 1: 3
. 2: 21 48
. 3: 91 133 243
. 4: 273 336 481 768
. 5: 651 741 931 1281 1875
. 6: 1333 1456 1701 2128 2821 3888
. 7: 2451 2613 2923 3441 4251 5461 7203
. 8: 4161 4368 4753 5376 6321 7696 9633 12288
. 9: 6643 6901 7371 8113 9211 10773 12931 15841 19683
. 10: 10101 10416 10981 11856 13125 14896 17301 20496 24661 30000
. 11: 14763 15141 15811 16833 18291 20293 22971 26481 31003 36741 43923
MATHEMATICA
Table[n^4+(n*k)^2+k^4, {n, 10}, {k, n}]//Flatten (* Harvey P. Dale, Jul 05 2020 *)
PROG
(Haskell)
a219069 n k = a219069_tabl !! (n-1) !! (k-1)
a219069_row n = a219069_tabl !! n
a219069_tabl = zipWith (zipWith (*)) a215630_tabl a215631_tabl
CROSSREFS
Cf. A239426 (central terms).
Cf. A243201 (diagonal (n + 1, n)). - Mathew Englander, Jun 03 2014
AUTHOR
Reinhard Zumkeller, Nov 11 2012
STATUS
approved