login
A219069
Triangle read by rows: T(n,k) = n^4 + (n*k)^2 + k^4, 1 <= k <= n.
6
3, 21, 48, 91, 133, 243, 273, 336, 481, 768, 651, 741, 931, 1281, 1875, 1333, 1456, 1701, 2128, 2821, 3888, 2451, 2613, 2923, 3441, 4251, 5461, 7203, 4161, 4368, 4753, 5376, 6321, 7696, 9633, 12288, 6643, 6901, 7371, 8113, 9211, 10773, 12931, 15841, 19683
OFFSET
1,1
COMMENTS
Entry 17a from July 9, 1796 in Gauss's Mathematical Diary: "Summa trium quadratorum continue proportionalium numquam primus esse potest: conspicuum exemplum novimus et quod congruum videtur. Confidamus." Paul Bachmann explains that this note is based on Gauss's discovery of this factorization: n^4 + n^2*k^2 + k^4 = (n^2 + n*k + k^2) * (n^2 - n*k + k^2).
REFERENCES
Carl Friedrich Gauss (Hans Wussing, ed.), Mathematisches Tagebuch 1796-1814, Ostwalds Klassiker der Exakten Wissenschaften, Leipzig (1976, 1979), pp. 43, 63, 90.
FORMULA
T(n,k) = A215630(n,k) * A215631(n,k), 1 <= k <= n.
EXAMPLE
The triangle begins:
. 1: 3
. 2: 21 48
. 3: 91 133 243
. 4: 273 336 481 768
. 5: 651 741 931 1281 1875
. 6: 1333 1456 1701 2128 2821 3888
. 7: 2451 2613 2923 3441 4251 5461 7203
. 8: 4161 4368 4753 5376 6321 7696 9633 12288
. 9: 6643 6901 7371 8113 9211 10773 12931 15841 19683
. 10: 10101 10416 10981 11856 13125 14896 17301 20496 24661 30000
. 11: 14763 15141 15811 16833 18291 20293 22971 26481 31003 36741 43923
MATHEMATICA
Table[n^4+(n*k)^2+k^4, {n, 10}, {k, n}]//Flatten (* Harvey P. Dale, Jul 05 2020 *)
PROG
(Haskell)
a219069 n k = a219069_tabl !! (n-1) !! (k-1)
a219069_row n = a219069_tabl !! n
a219069_tabl = zipWith (zipWith (*)) a215630_tabl a215631_tabl
CROSSREFS
Cf. A059826 (left edge), A219056 (right edge), A219070 (row sums).
Cf. A239426 (central terms).
Cf. A243201 (diagonal (n + 1, n)). - Mathew Englander, Jun 03 2014
Sequence in context: A360316 A034186 A318211 * A027499 A303834 A340687
KEYWORD
nonn,tabl,look
AUTHOR
Reinhard Zumkeller, Nov 11 2012
STATUS
approved