Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 11 2023 10:39:54
%S 4,7,11,13,29,32,36,44,79,157,197,341,467,996,1421,2479,3269,5203,
%T 7987,9341,14836,26047,47816,64304,100693,127597,167167,174697,182089,
%U 198791
%N Numbers k such that 3^k - 34 is prime.
%C a(31) > 2*10^5. - _Robert Price_, Nov 23 2013
%e For k = 4, 3^4 - 34 = 47 and 47 is prime. Hence k = 4 is included in the sequence.
%t Do[If[PrimeQ[3^n - 34], Print[n]], {n, 1, 10000}]
%t Select[Range[10000], PrimeQ[3^# - 34] &] (* _Alonso del Arte_, Nov 10 2012 *)
%o (PARI) is(n)=isprime(3^n-34) \\ _Charles R Greathouse IV_, Feb 17 2017
%Y Cf. Sequences of numbers k such that 3^k + m is prime:
%Y (m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
%Y (m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
%Y (m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
%Y (m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
%Y (m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
%Y (m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.
%K nonn,more
%O 1,1
%A _Nicolas M. Perrault_, Nov 10 2012
%E a(21)-a(30) from _Robert Price_, Nov 23 2013