Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 12 2023 09:03:46
%S 2,4,6,14,24,35,79,178,186,230,328,494,664,839,1103,1678,2074,3096,
%T 5150,6948,9919,13655,19483,22927,39991,54551,67687,76655,90151,
%U 175250,179120
%N Numbers k such that 3^k + 22 is prime.
%C a(32) > 2*10^5. - _Robert Price_, Dec 04 2013
%e 3^2 + 22 = 31 (prime), so 2 is in the sequence.
%t Do[If[PrimeQ[3^n + 22], Print[n]], {n, 10000}]
%o (PARI) is(n)=isprime(3^n+22) \\ _Charles R Greathouse IV_, Feb 17 2017
%Y Cf. Sequences of numbers k such that 3^k + m is prime:
%Y (m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
%Y (m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
%Y (m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
%Y (m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
%Y (m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
%Y (m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.
%K nonn,more
%O 1,1
%A _Nicolas M. Perrault_, Nov 10 2012
%E a(21)-a(31) from _Robert Price_, Dec 04 2013