login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that n = x + y, sigma_1(n) = sigma_1(x) + sigma_1(y) and sigma_2(n) = sigma_2(x) + sigma_2(y).
1

%I #33 Nov 16 2012 12:03:58

%S 434,2170,4774,5642,7378,8246,9982,10850,12586,16058,17794,18662,

%T 20398,23002,23870,25606,26474,28210,29078,30814,31682,34286,36022,

%U 36890,38626,41230,42098,43834,44702,47306,49042,49910,52514,54250,55118,56854,59458,60326

%N Numbers n such that n = x + y, sigma_1(n) = sigma_1(x) + sigma_1(y) and sigma_2(n) = sigma_2(x) + sigma_2(y).

%C Conjecture: This sequence is infinite.

%C Conjecture: The sequence only consists of even numbers.

%C Conjecture: The partitions only consist of even numbers.

%C Conjecture: None satisfy sigma_3(n) = sigma_3(x) + sigma_3(y).

%C Conjecture: With the lower partition as 6*A185208(n) and the upper partition 214/3 = 71.3333... of this, then the equalities are satisfied.

%C The first 12 partitions are (428, 6), (2140, 30), (4708, 66), (5564, 78), (7276, 102), (8132, 114), (9844, 138), (10700, 150), (12412, 174), (15836, 222), (17548, 246), (18404, 258).

%C The first example of this ratio not being used is at a(67) = 103818 where (103554, 264) satisfies the equalities. Here the ratio is 1569/4 = 392.25. - _Donovan Johnson_, Nov 13 2012

%H Donovan Johnson, <a href="/A219033/b219033.txt">Table of n, a(n) for n = 1..1000</a>

%e 2140 + 30 = 2170.

%e sigma_1(2140) + sigma_1(30) = 4536 + 72 = 4608 = sigma_1(2170).

%e sigma_2(2140) + sigma_2(30) = 6251700 + 1300 = 6253000 = sigma_2(2170).

%e Hence, 2170 is in the sequence.

%o (JavaScript)

%o function divisorSum(n,x) {

%o c=0;

%o for (i=1;i<=n;i++) if (n%i==0) c+=Math.pow(i,x);

%o return c;

%o }

%o ds=new Array();

%o for (j=1;j<40001;j++) {

%o ds[j]=new Array();

%o ds[j][0]=divisorSum(j,1);

%o ds[j][1]=divisorSum(j,2);

%o }

%o a=new Array();

%o ac=0;

%o for (j=1;j<20000;j++)

%o for (k=1;k<=j;k++)

%o if (ds[j][0]+ds[k][0]==ds[j+k][0] && ds[j][1]+ds[k][1]==ds[j+k][1]) a[ac++]=j+", "+k+" ::: ";

%o a.sort(function(a, b) {return a-b;});

%o i=0;

%o while(i++<a.length-1)

%o if (a[i]==a[i+1]) a.splice(i--,1);

%o document.writeln(a);

%Y Cf. A000203, A001157, A185208.

%K nonn

%O 1,1

%A _Jon Perry_, Nov 10 2012

%E a(6) corrected and a(13)-a(38) from _Donovan Johnson_, Nov 10 2012