login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Power floor sequence of 2+sqrt(6).
3

%I #13 Nov 13 2017 07:06:35

%S 4,17,75,333,1481,6589,29317,130445,580413,2582541,11490989,51129037,

%T 227498125,1012250573,4503998541,20040495309,89169978317,396760903885,

%U 1765383572173,7855056096461,34950991530189,155514078313677,691958296315085,3078861341887693

%N Power floor sequence of 2+sqrt(6).

%C See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(6), and the limit p1(r) = 3.77794213613376987528458445727451673384055973517...

%H Clark Kimberling, <a href="/A218984/b218984.txt">Table of n, a(n) for n = 0..250</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-2,-2).

%F a(n) = [x*a(n-1)], where x=2+sqrt(6), a(0) = [x].

%F a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3).

%F G.f.: (4 - 3*x - 2*x^2)/(1 - 5*x + 2*x^2 + 2*x^3).

%F a(n) = (1/30)*(6 + (57-23*sqrt(6))*(2-sqrt(6))^n + (2+sqrt(6))^n*(57+23*sqrt(6))). - _Colin Barker_, Nov 13 2017

%e a(0) = [r] = 4, where r = 2+sqrt(6); a(1) = [4*r] = 17; a(2) = [17*r] = 75.

%t x = 2 + Sqrt[6]; z = 30; (* z = # terms in sequences *)

%t f[x_] := Floor[x]; c[x_] := Ceiling[x];

%t p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];

%t p1[n_] := f[x*p1[n - 1]]

%t p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]

%t p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]

%t p4[n_] := c[x*p4[n - 1]]

%t t1 = Table[p1[n], {n, 0, z}] (* A218984 *)

%t t2 = Table[p2[n], {n, 0, z}] (* A090017 *)

%t t3 = Table[p3[n], {n, 0, z}] (* A123347 *)

%t t4 = Table[p4[n], {n, 0, z}] (* A218985 *)

%o (PARI) Vec((4 - 3*x - 2*x^2) / ((1 - x)*(1 - 4*x - 2*x^2)) + O(x^40)) \\ _Colin Barker_, Nov 13 2017

%Y Cf. A214992, A090017, A123347, A218985.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Nov 11 2012