%I #6 Mar 06 2013 09:30:57
%S 3,7,16,36,81,182,407,911,2038,4558,10192,22791,50963,113957,254816,
%T 569786,1274081,2848932,6370406,14244661,31852031,71223307,159260157,
%U 356116538,796300787,1780582691,3981503937,8902913456
%N Power ceiling sequence of sqrt(5).
%C See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p4(r) = 3.2616480254413398807499379112702935254866963...
%C See A214999 for the power floor function, p1(x). For comparison of p4 and p1, limit(p4(r)/p1(r)) = 2.183820340393031136325385184014007307594650...
%H Clark Kimberling, <a href="/A218983/b218983.txt">Table of n, a(n) for n = 0..250</a>
%F a(n) = ceiling(x*a(n-1)), where x=sqrt(5), a(0) = ceiling(x).
%e a(0) = ceiling(r) = 3, where r = sqrt(5);
%e a(1) = ceiling(3*r) = 7; a(2) = ceiling(7*r ) = 16.
%t (See A214999.)
%t With[{c=Sqrt[5]},NestList[Ceiling[c #]&,Ceiling[c],30]] (* _Harvey P. Dale_, Mar 06 2013 *)
%Y Cf. A214992, A214999, A215091, A218982.
%K nonn,easy
%O 0,1
%A _Clark Kimberling_, Nov 10 2012