login
Number of conjugacy classes of subgroups of the symmetric which are also subgroups of the alternating group.
1

%I #29 Dec 25 2023 10:02:34

%S 1,1,1,2,5,9,22,37,112,195,423,780,2401,4409

%N Number of conjugacy classes of subgroups of the symmetric which are also subgroups of the alternating group.

%H GAP, <a href="https://www.gap-system.org/Packages/tomlib.html">GAP package TomLib, The GAP Library of Tables of Marks</a>.

%H Liam Naughton, <a href="http://www.maths.nuigalway.ie/~liam/CountingSubgroups.g">CountingSubgroups.g</a>

%H Liam Naughton and Goetz Pfeiffer, <a href="http://arxiv.org/abs/1211.1911">Integer sequences realized by the subgroup pattern of the symmetric group</a>, arXiv:1211.1911 [math.GR], 2012-2013.

%H Liam Naughton and Goetz Pfeiffer, <a href="https://web.archive.org/web/20210307075628/http://schmidt.nuigalway.ie/tomlib/">Tomlib, The GAP table of marks library</a>.

%o (GAP)

%o # GAP 4.11.1

%o n := 9;;

%o GS := List( [1..n], m-> SymmetricGroup(m));;

%o subS := List( GS, x-> ConjugacyClassesSubgroups(x));;

%o repS := List( subS, x-> List(x, Representative));;

%o GA := List( [1..n], m-> AlternatingGroup(m));;

%o List( [1..n], m-> Number( repS[m], x-> IsSubgroup( GA[m], x)));

%o # _Peter Dolland_, Jul 15 2021

%K nonn,more

%O 0,4

%A _Liam Naughton_, Nov 23 2012