

A218858


Number of Gaussian primes at taxicab distance n from the origin.


5



0, 0, 4, 12, 0, 16, 0, 20, 0, 16, 0, 28, 0, 24, 0, 32, 0, 32, 0, 36, 0, 24, 0, 36, 0, 64, 0, 32, 0, 48, 0, 44, 0, 32, 0, 72, 0, 64, 0, 48, 0, 72, 0, 60, 0, 56, 0, 60, 0, 40, 0, 56, 0, 72, 0, 112, 0, 64, 0, 76, 0, 88, 0, 56, 0, 136, 0, 92, 0, 80, 0, 76, 0, 88, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Except for n = 2, there are no Gaussian primes at an even taxicab distance from the origin. All terms are multiples of 4. See A218859 for this sequence divided by 4.
The arithmetic derivative of Gaussian primes is either 1, 1, I, or I.


LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000
T. D. Noe, Linear plot


EXAMPLE

In the taxicab distance, the four Gaussian primes closest to the origin are 1+I, 1+I, iI, and 1I. The 12 at taxicab distance 3 are the four reflections of 3, 2+I, and 1+2I.


MATHEMATICA

Table[cnt = 0; Do[If[PrimeQ[n  i + I*i, GaussianIntegers > True], cnt++], {i, 0, n}]; Do[If[PrimeQ[i  n + I*i, GaussianIntegers > True], cnt++], {i, n  1, 0, 1}]; Do[If[PrimeQ[i  n  I*i, GaussianIntegers > True], cnt++], {i, 1, n}]; Do[If[PrimeQ[n  i  I*i, GaussianIntegers > True], cnt++], {i, n  1, 1, 1}]; cnt, {n, 0, 100}]


CROSSREFS

Cf. A055025 (norms of Gaussian primes).
Cf. A222593 (firstquadrant Gaussian primes).
Cf. A225071, A225072 (number of terms at an odd distance from the origin).
Sequence in context: A180057 A222316 A255383 * A014458 A099733 A350259
Adjacent sequences: A218855 A218856 A218857 * A218859 A218860 A218861


KEYWORD

nonn


AUTHOR

T. D. Noe, Nov 12 2012


STATUS

approved



