login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n for which sigma(n) = sigma(x) + sigma(y) + sigma(z), where n = x + y + z, with x, y, z all positive.
4

%I #21 Jun 22 2020 17:00:43

%S 5,7,10,13,14,15,16,19,20,21,25,26,27,28,31,32,33,34,35,38,39,40,42,

%T 43,44,45,46,49,50,51,52,54,55,56,57,58,61,62,63,64,65,66,68,69,70,73,

%U 74,75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94,95,96

%N Numbers n for which sigma(n) = sigma(x) + sigma(y) + sigma(z), where n = x + y + z, with x, y, z all positive.

%C Contains the greater of every twin prime pair.

%H Harvey P. Dale, <a href="/A218852/b218852.txt">Table of n, a(n) for n = 1..400</a>

%e sigma(1) + sigma(1) + sigma(3) = sigma(5) = 6.

%e sigma(2) + sigma(2) + sigma(6) = sigma(10) = 18.

%e *sigma(2) + sigma(8) + sigma(30) = sigma(40) = 90.

%e *sigma(6) + sigma(10) + sigma(24) = sigma(40) = 90.

%e sigma(8) + sigma(8) + sigma(24) = sigma(40) = 90.

%e Hence, 5, 10 and 40 are in the sequence.

%e Note that (*) means that (x+y+z) divides xyz as well.

%p isA218852 := proc(n)

%p local x,y,z ;

%p for x from 1 to n-2 do

%p for y from x to n-x-1 do

%p z := n-x-y ;

%p if numtheory[sigma](x)+numtheory[sigma](y)+numtheory[sigma](z) = numtheory[sigma](n) then

%p return true;

%p end if;

%p end do:

%p end do:

%p return false;

%p end proc:

%p for n from 3 to 120 do

%p if isA218852(n) then

%p printf("%d,",n);

%p end if;

%p end do: # _R. J. Mathar_, Nov 07 2012

%t xyzQ[n_]:=Module[{ips=Total/@(DivisorSigma[1,#]&/@IntegerPartitions[n,{3}])},Total[Boole[DivisorSigma[1,n]==#&/@ips]]>0]; Select[Range[ 100], xyzQ] (* _Harvey P. Dale_, Jun 22 2020 *)

%Y Cf. A000203, A211223, A218980.

%K nonn

%O 1,1

%A _Jon Perry_, Nov 07 2012