login
a(n) is smallest number such that a(n)^2 + 1 is divisible by 73^n.
3

%I #4 Nov 05 2012 12:19:57

%S 0,27,776,153765,6459524,404034898,41865466758,3219884218827,

%T 239822883201307,9110883894036198,991706090146518323,

%U 142813358470363920740,8641533837443707913816,586811715371303018585730,2756887299416274753296336,729513196939063257288876118

%N a(n) is smallest number such that a(n)^2 + 1 is divisible by 73^n.

%e a(3) = 153765 because 153765^2+1 = 2 * 73 ^ 3 * 30389.

%t b=27;n73=73;jo=Join[{0,b},Table[n73=73*n73;b=PowerMod[b,73,n73];b=Min[b,n73-b],{99}]]

%Y Cf. A002522, A049532, A034939, A218709, A218710, A218712, A218713, A218714, A218715, A218716.

%K nonn

%O 0,2

%A _Michel Lagneau_, Nov 04 2012