%I #4 Nov 05 2012 12:18:41
%S 0,12,41,10133,34522,7745569,253879357,7986582530,61012922706,
%T 4563230639355,67972499239990,1330094199140593,47471944863682723,
%U 5000878909740249297,5000878909740249297,590115586441858677665,77072583141941801290876,423420364218752896284166
%N a(n) is smallest number such that a(n)^2 + 1 is divisible by 29^n.
%e a(4) = 34522 because 34522^2+1 = 5 * 29 ^ 4 * 337.
%t b=12;n29=29;jo=Join[{0,b},Table[n29=29*n29;b=PowerMod[b,29,n29];b=Min[b,n29-b],{99}]]
%Y Cf. A002522, A049532, A034939, A218709, A218710.
%K nonn
%O 0,2
%A _Michel Lagneau_, Nov 04 2012