login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218703
Number of partitions of n in which any two distinct parts differ by at least 8.
2
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 4, 10, 7, 12, 13, 17, 16, 23, 21, 30, 30, 34, 35, 47, 43, 51, 52, 66, 63, 81, 77, 100, 99, 120, 121, 156, 150, 185, 189, 234, 230, 283, 281, 343, 350, 409, 414, 503, 497, 587, 600, 695, 703, 824, 830, 967, 988, 1122, 1148, 1333
OFFSET
0,3
COMMENTS
Also number of partitions of n in which each part, with the possible exception of the largest, occurs at least 8 times.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(8*i)/(1-x^i)).
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-8*x)) dx = -1.1447921975208768146551512630331558734964408879... - Vaclav Kotesovec, Jan 28 2022
EXAMPLE
a(9) = 3: [1,1,1,1,1,1,1,1,1], [3,3,3], [9].
a(10) = 5: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [1,9], [10].
a(11) = 4: [1,1,1,1,1,1,1,1,1,1,1], [1,1,9], [1,10], [11].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-8), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
CROSSREFS
Column k=8 of A218698.
Cf. A160978.
Sequence in context: A169819 A373738 A134681 * A326641 A144372 A182861
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 04 2012
STATUS
approved