login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hilltop maps: number of n X 3 binary arrays indicating the locations of corresponding elements not exceeded by any king-move neighbor in a random 0..1 n X 3 array.
2

%I #8 Mar 10 2018 05:46:52

%S 5,57,417,3249,25533,199489,1560161,12202673,95434773,746388537,

%T 5837454753,45654295713,357058903853,2792531543489,21840184444225,

%U 170810481722657,1335896257560101,10447946710663673,81712625405191841

%N Hilltop maps: number of n X 3 binary arrays indicating the locations of corresponding elements not exceeded by any king-move neighbor in a random 0..1 n X 3 array.

%C Column 3 of A218663.

%H R. H. Hardin, <a href="/A218658/b218658.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) + 11*a(n-2) + 26*a(n-3) - 5*a(n-4) - 5*a(n-6).

%F Empirical g.f.: x*(5 + 27*x + 20*x^2 - 10*x^3 - 5*x^4 - 5*x^5) / (1 - 6*x - 11*x^2 - 26*x^3 + 5*x^4 + 5*x^6). - _Colin Barker_, Mar 10 2018

%e Some solutions for n=3:

%e ..0..0..1....1..1..0....1..0..0....1..1..0....1..0..0....0..1..0....1..1..1

%e ..1..1..1....1..1..1....0..0..1....1..0..0....1..0..1....0..1..1....0..1..0

%e ..1..0..0....1..1..0....0..1..0....0..1..1....0..1..0....0..1..0....1..1..1

%Y Cf. A218663.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 04 2012