login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

q-factorial numbers 5!_q.
3

%I #28 Feb 14 2024 09:08:58

%S 1,120,9765,251680,3043425,22661496,121226245,510902400,1799118945,

%T 5507702200,15072415941,37630041120,87029433985,188664603960,

%U 386925380325,756298318336,1417430759745,2559798038520,4472991338725,7589075296800,12538953723681

%N q-factorial numbers 5!_q.

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F a(n) = (n + 1)*(n^2 + n + 1)*(n^3 + n^2 + n + 1)*(n^4 + n^3 + n^2 + n + 1).

%F G.f.: (1 + x*(109 + x*(8500 + x*(150700 + x*(792550 + x*(1454134 + x*(978436 + 5*x*(45788 + x*(3053 + 33*x)))))))))/(1 - x)^11.

%t Table[QFactorial[5, n], {n, 0, 20}]

%t Join[{1},With[{f=Times@@Table[Total[n^Range[0,i]],{i,4}]},Table[f,{n,20}]]] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,120,9765,251680,3043425,22661496,121226245,510902400,1799118945,5507702200,15072415941},30] (* _Harvey P. Dale_, Sep 04 2017 *)

%Y Cf. A069777, A069778, A069779.

%K easy,nonn

%O 0,2

%A _Arkadiusz Wesolowski_, Oct 31 2012