Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jan 23 2022 07:35:19
%S 1,3,5,7,8,7,8,4,0,7,6,1,2,1,0,5,7,0,1,3,8,7,4,3,9,7,0,9,7,6,0,6,0,7,
%T 1,8,5,5,7,8,6,0,5,8,6,5,2,9,5,6,7,8,7,0,4,4,9,6,8,7,8,2,5,4,3,8,4,0,
%U 7,1,9,1,1,0,3,4,8,6,2,3,3,6,8,7,7,1,4
%N Decimal expansion of Lucas factorial constant.
%C The Lucas factorial constant is associated with the Lucas factorial A135407.
%H G. C. Greubel, <a href="/A218490/b218490.txt">Table of n, a(n) for n = 1..10000</a>
%F Equals exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - _Vaclav Kotesovec_, Jun 08 2013
%F Equals Product_{k=0..infinity} (1 + (-1)^k/phi^(2*k)). - _G. C. Greubel_, Dec 23 2017
%F Equals lim_{n->oo} A135407(n)/phi^(n*(n+1)/2), where phi is the golden ratio (A001622). - _Amiram Eldar_, Jan 23 2022
%e 1.35787840761210570138743970976060718557860586529567870449687825438407191103...
%t RealDigits[QPochhammer[-1, -1/GoldenRatio^2], 10, 105][[1]] (* slightly modified by _Robert G. Wilson v_, Dec 21 2017 *)
%o (PARI) prodinf(j=0, 1 + ((sqrt(5) - 3)/2)^j) \\ _Iain Fox_, Dec 21 2017
%Y Cf. A062073, A135407, A070825, A003266, A000032, A000045, A186269, A001622.
%K nonn,cons
%O 1,2
%A _Vaclav Kotesovec_, Oct 30 2012