login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers differing from next 3 greater squares by squares.
4

%I #17 Apr 18 2021 14:40:01

%S 720,5040,5760,10080,20160,22176,28800,56160,60480,100800,126720,

%T 134640,151200,187200,248976,262080,282240,332640,428400,443520,

%U 463680,665280,677376,734400,763776,887040,1108800,1149120,1190160,1235520,1497600,1685376,1718640

%N Positive numbers differing from next 3 greater squares by squares.

%C All terms are multiples of 144. - _Zak Seidov_, Nov 27 2013

%H Donovan Johnson, <a href="/A218487/b218487.txt">Table of n, a(n) for n = 1..1000</a>

%H E. J. Barbeau, <a href="http://dx.doi.org/10.4153/CMB-1985-040-9">Numbers differing from consecutive squares by squares</a>, Canad. Math. Bull. 28(1985), pp. 337-342.

%e 720 = 27^2 - 3^2 = 28^2 - 8^2 = 29^2 - 11^2.

%t Select[Range[172*10^4],AllTrue[Sqrt[(Floor[Sqrt[#]]+{1,2,3})^2-#],IntegerQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 18 2021 *)

%o (PARI) sq3(n) = {for (i=1, n, a = sqrtint(i) + 1; if (issquare(a^2-i) && issquare((a+1)^2-i) && issquare((a+2)^2-i), print1(i, ", ")););}

%Y Cf. A218485, A218486, A218488.

%K nonn

%O 1,1

%A _Michel Marcus_, Oct 30 2012