login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218474
Number of 3n-length 4-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.
2
1, 1, 10, 127, 1810, 27631, 441604, 7293700, 123485914, 2131511455, 37368531010, 663539143015, 11908626395320, 215670579863428, 3936425910379840, 72335601620713432, 1337149262553687658, 24847762997547701695, 463900901255209923310, 8697278488612398979645
OFFSET
0,3
LINKS
FORMULA
a(n) = 1/n * Sum_{j=0..n-1} C(3*n,j)*(n-j)*3^j for n>0, a(0) = 1.
a(n) ~ 3^(4*n+3/2) / (25*sqrt(Pi)*n^(3/2)*4^n). - Vaclav Kotesovec, Jul 16 2014
MAPLE
a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*3^j, j=0..n-1)/n):
seq(a(n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [1, 1, 10][n+1],
((2359*n^3 -5063*n^2 +2898*n -360)*a(n-1)
-576*(3*n-5)*(7*n-2)*(3*n-4)*a(n-2))/
(2*(2*n-1)*(7*n-9)*n))
end:
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := If[n == 0, 1, Sum[Binomial[3n, j] (n - j) 3^j, {j, 0, n - 1}]/n];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 18 2020, after Maple *)
CROSSREFS
Column k=4 of A213027.
Sequence in context: A079241 A270965 A245923 * A234284 A296379 A183538
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 29 2012
STATUS
approved