Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 24 2022 07:46:09
%S 1,4,27,16,151,7,701,17,81,11,104281,13,599,197,31,64,3044803,199,
%T 109912203092239643840221,176,18927,23,277,119,101,131,243,29,59,61,
%U 243270318891483838103593381595151809701,97,67,12179212,71,37,149,108301,79,41,10654507
%N Minimal order of degree-n irreducible polynomials over GF(19).
%C a(n) < 19^n.
%H Max Alekseyev, <a href="/A218362/b218362.txt">Table of n, a(n) for n = 1..238</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a>
%F a(n) = min(M(n)) with M(n) = {d : d|(19^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
%F a(n) = A218339(n,1) = A213224(n,8).
%p with(numtheory):
%p M:= proc(n) M(n):= divisors(19^n-1) minus U(n-1) end:
%p U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
%p a:= n-> min(M(n)[]):
%p seq(a(n), n=1..28);
%t M[n_] := M[n] = Divisors[19^n - 1]~Complement~U[n - 1];
%t U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
%t a[n_] := Min[M[n]];
%t Table[a[n], {n, 1, 41}] (* _Jean-François Alcover_, Oct 24 2022, after _Alois P. Heinz_ *)
%Y Cf. A213224, A218339.
%K nonn
%O 1,2
%A _Alois P. Heinz_, Oct 27 2012