Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Mar 30 2016 15:17:23
%S 1,2,3,4,6,12,7,8,14,21,24,28,42,56,84,168,9,18,36,61,122,183,244,366,
%T 549,732,1098,2196,5,10,15,16,17,20,30,34,35,40,48,51,60,68,70,80,85,
%U 102,105,112,119,120,136,140,170,204,210,238,240,255,272,280,336
%N Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(13) listed in ascending order.
%H Alois P. Heinz, <a href="/A218337/b218337.txt">Rows n = 1..20, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a>
%F T(n,k) = k-th smallest element of M(n) = {d : d|(13^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.
%e Triangle begins:
%e : 1, 2, 3, 4, 6, 12;
%e : 7, 8, 14, 21, 24, 28, 42, 56, 84, 168;
%e : 9, 18, 36, 61, 122, 183, 244, 366, 549, ...
%e : 5, 10, 15, 16, 17, 20, 30, 34, 35, ...
%e : 30941, 61882, 92823, 123764, 185646, 371292;
%p with(numtheory):
%p M:= proc(n) M(n):= divisors(13^n-1) minus U(n-1) end:
%p U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
%p T:= n-> sort([M(n)[]])[]:
%p seq(T(n), n=1..5);
%t M[n_] := Divisors[13^n-1] ~Complement~ U[n-1]; U[n_] := If[n == 0, {}, M[n] ~Union~ U[n-1]]; T[n_] := Sort[M[n]]; Table[T[n], {n, 1, 5}] // Flatten (* _Jean-François Alcover_, Feb 13 2015, after _Alois P. Heinz_ *)
%Y Column k=6 of A212737.
%Y Column k=1 gives: A218360.
%Y Row lengths are A212957(n,13).
%K nonn,look,tabf
%O 1,2
%A _Alois P. Heinz_, Oct 26 2012