login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies A( x/(exp(x)*cosh(x)) ) = exp(2*x)*cosh(2*x).
14

%I #32 Apr 23 2024 15:20:07

%S 1,2,12,104,1216,18112,329600,7108096,177549312,5046554624,

%T 160947232768,5694342479872,221410157133824,9387011838312448,

%U 431051678297358336,21316106766591721472,1129526392342026649600,63855305138514241257472,3836490516381680506241024

%N E.g.f. A(x) satisfies A( x/(exp(x)*cosh(x)) ) = exp(2*x)*cosh(2*x).

%C More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),

%C then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

%H Vaclav Kotesovec, <a href="/A218300/b218300.txt">Table of n, a(n) for n = 0..300</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F E.g.f.: A(x) = Sum_{n>=0} 2*(n+2)^(n-1) * cosh((n+2)*x) * x^n/n!.

%F E.g.f.: A(x) = 1 + Sum_{n>=0} 2*(n+2)^(n-1) * sinh((n+2)*x) * x^n/n!.

%F a(n) ~ c * n^(n-1) / (exp(n) * (LambertW(exp(-1)))^n), where c = sqrt(1 + LambertW(exp(-1)))/LambertW(exp(-1))^2 = 14.5815783688217906961670551786416446... . - _Vaclav Kotesovec_, Jul 13 2014, updated Jun 10 2019

%F From _Seiichi Manyama_, Apr 23 2024: (Start)

%F E.g.f.: A(x) = 1/2 + 1/2 * exp( 2*x - 2*LambertW(-x * exp(x)) ).

%F a(n) = Sum_{k=0..n} (k+2)^(n-1) * binomial(n,k) for n > 0.

%F G.f.: 1/2 + Sum_{k>=0} (k+2)^(k-1) * x^k/(1 - (k+2)*x)^(k+1). (End)

%e E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 104*x^3/3! + 1216*x^4/4! + 18112*x^5/5! +...

%e where

%e A(x) = cosh(2*x) + 2*3^0*cosh(3*x)*x + 2*4^1*cosh(4*x)*x^2/2! + 2*5^2*cosh(5*x)*x^3/3! + 2*6^3*cosh(6*x)*x^4/4! + 2*7^4*cosh(7*x)*x^5/5! +...

%t nmin = 0; nmax = 18; sol = {a[0] -> 1}; nsol = Length[sol];

%t Do[A[x_] = Sum[a[k] x^k/k!, {k, 0, n}] /. sol; eq = CoefficientList[ A[x/(Exp[x] Cosh[x])] - Exp[2x] Cosh[2x] + O[x]^(n+1), x][[nsol+1;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nsol+1, nmax}];

%t a /@ Range[nmin, nmax] /. sol (* _Jean-François Alcover_, Nov 06 2019 *)

%o (PARI) {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(X)*cosh(X)))); Egf=exp(2*R)*cosh(2*R); n!*polcoeff(Egf,n)}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) /* Formula derived from a LambertW identity: */

%o {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,2*(k+2)^(k-1)*cosh((k+2)*X)*x^k/k!); n!*polcoeff(Egf,n)}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. A201595, A218301, A218302, A218303, A218304, A218305, A218306, A218307, A218308, A218309, A218310, A217900.

%Y Cf. A202357.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 25 2012