login
A218290
Multiples of 5 such that the sum of their digits is also a multiple of 5.
3
5, 50, 55, 140, 145, 190, 195, 230, 235, 280, 285, 320, 325, 370, 375, 410, 415, 460, 465, 500, 505, 550, 555, 640, 645, 690, 695, 730, 735, 780, 785, 820, 825, 870, 875, 910, 915, 960, 965, 1040, 1045, 1090, 1095, 1130, 1135, 1180, 1185, 1220, 1225, 1270
OFFSET
1,1
LINKS
EXAMPLE
145 is a multiple of 5, and its digits, 1, 4, 5, add up to 10, which is also a multiple of 5. [Alonso del Arte, Oct 27 2012]
MATHEMATICA
Select[ Range[5, 1300, 5], Mod[ Total[ IntegerDigits[#]], 5] == 0 &] (* Jean-François Alcover, Oct 26 2012 *)
PROG
(Magma) [n: n in [5..1300 by 5] | IsZero(&+Intseq(n) mod 5)];
CROSSREFS
Cf. multiples of k with digit sum divisible by k: A008585 (k = 3), A008591 (k = 9), A062753 (k = 4), A179082 (k = 2), A216994 (k = 7), A216995 (k = 11), A216997 (k = 8), A218291 (k = 6), A218292 (k = 10).
Sequence in context: A082795 A217398 A059008 * A136890 A136889 A136887
KEYWORD
nonn,base,easy
AUTHOR
Bruno Berselli, Oct 25 2012
STATUS
approved