Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 10 2017 08:16:20
%S 1,8,64,400,2465,14092,80016,442248,2442351,13375366,73477622,
%T 403703404,2230591660,12380801756,69225756076,389806286920,
%U 2213844625658,12681996193252,73339826141716,428242854338216,2526129602115517,15056977593085444,90712249806247400
%N Number of standard Young tableaux of n cells and height >= 7.
%C Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= 7. a(7)=1: 1234567; a(8)=8: 12345678, 12345687, 12345768, 12346578, 12354678, 12435678, 13245678, 21345678.
%H Alois P. Heinz, <a href="/A218267/b218267.txt">Table of n, a(n) for n = 7..300</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Involution_(mathematics)">Involution (mathematics)</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%F a(n) = A000085(n) - A007579(n) = A182172(n,n) - A182172(n,6).
%p b:= proc(n) b(n):= `if`(n<2, 1, b(n-1) +(n-1)*b(n-2)) end:
%p g:= proc(n) option remember;
%p `if`(n<4, [1, 1, 2, 4][n+1], ((20*n^2+184*n+336)*g(n-1)
%p +4*(n-1)*(10*n^2+58*n+33)*g(n-2) -144*(n-1)*(n-2)*g(n-3)
%p -144*(n-1)*(n-2)*(n-3)*g(n-4)) / ((n+5)*(n+8)*(n+9)))
%p end:
%p a:= n-> b(n) -g(n):
%p seq(a(n), n=7..30);
%Y Column k=7 of A182222.
%K nonn
%O 7,2
%A _Alois P. Heinz_, Oct 24 2012