login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers congruent to 2, 3, 6, 11 mod 12.
4

%I #37 Mar 18 2022 05:21:06

%S 2,3,6,11,14,15,18,23,26,27,30,35,38,39,42,47,50,51,54,59,62,63,66,71,

%T 74,75,78,83,86,87,90,95,98,99,102,107,110,111,114,119,122,123,126,

%U 131,134,135,138,143,146,147,150,155,158,159,162,167,170,171,174

%N Numbers congruent to 2, 3, 6, 11 mod 12.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-1).

%F a(n) = 2a(n-1) - 2a(n-2) + 2a(n-3) - a(n-4). - _Charles R Greathouse IV_, Nov 09 2012

%F G.f.: x^2*(x^3+4*x^2-x+2) / ((x-1)^2*(x^2+1)). - _Colin Barker_, Jan 07 2013

%F {m>1|C(m,4)==0 (mod C(m,2))}. - _Gary Detlefs_, Jan 11 2014

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(3)+1)*Pi/24 - log(2+sqrt(3))/(4*sqrt(3)) - log(2)/6. - _Amiram Eldar_, Mar 18 2022

%t LinearRecurrence[{2, -2, 2, -1}, {2, 3, 6, 11}, 100] (* _T. D. Noe_, Nov 11 2012 *)

%o (PARI) for(m=2,175,if(binomial(m,4)%binomial(m,2)==0,print1(m,", "))) \\ _Hugo Pfoertner_, Aug 11 2020

%Y Cf. A042944, A042945.

%K nonn,easy

%O 1,1

%A _Jean-Claude Babois_, Oct 22 2012

%E Edited by _Andrey Zabolotskiy_, Aug 11 2020